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Makale Bilgisi 

 
Abstract 

Variable selection is an important subject in regression analysis. In regression analysis, the 
LASSO (Least Absolute Shrinkage and Selection Operator) provides sparse solutions to lead 
to variable selection. LASSO is a useful tool to achieve the shrinkage and variable selection 
simultaneously and the LASSO penalty term can shrink the parameter estimates toward 
exactly to zero. It is used generally in large data sets but in this article, we consider the 
variable selection problem for the multivariate Bernoulli logistic models adopting some 
information criteria especially in small data sets. Results of simulation were compared 
according to the four different criteria used for model selection. 
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Lojistik Regresyon Modellerinde Küçük Veri Setleri için LASSO 
Tahmincisi 

Özet 

Değişken seçimi, regresyon analizinde kullanılan önemli bir konudur. Regresyon analizinde, 
LASSO (En Küçük Mutlak Daralma ve Seçim Operatörü) değişken seçimine benzer olarak 
seyrek çözümler sunmaktadır. LASSO, daraltma ve değişken seçimi işlemlerini aynı anda 
yapabilen kullanışlı bir araçtır ve LASSO ceza kriteri, parametre tahminlerini tam olarak sıfır 
değerine indirebilir. Genellikle büyük veri kümelerinde kullanılır fakat bu çalışmada, 
özellikle küçük veri setlerinde bazı bilgi kriterlerini kullanarak çok değişkenli Bernoulli 
lojistik modelleri için değişken seçim problemi ele alınmıştır. Model seçiminde kullanılan 
dört farklı bilgi kriterine göre elde edilen simülasyon sonuçları karşılaştırılmıştır. 
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1 Introduction 

One of the statistical methods used in model 
selection is variable selection. Variable selection is 
a widely used method based on the Ordinary Least 
Squares (OLS) estimation method. However, this 
method is usually insufficient in the data sets 
where the number of variables is greater than the 
number of observations (p > n). The Least 
Absolute Shrinkage and Selection Operator 
(LASSO) estimation method has been proposed in 
order to obtain more consistent results with the 
OLS method in the p > n states [1]. The LASSO 
method regularizes model parameters by 
shrinking the regression coefficients, reducing 
some of them to zero so that it is possible to 
obtain easily interpretable models especially in 
large data sets. Furthermore, LASSO is a widely 
preferred method because it provides the 
shrinkage and variable selection simultaneously. 
The variable selection part occurs after the 
shrinkage to be used in the model. The use of 
LASSO estimator reveals more unbiased models 
especially when the number of variables is greater 
than the number of observations.  

The LASSO estimator provides strong predictive 
results in large data sets and is often used in 
situations with large data sets. In this study, its 
effect on smaller data sets was examined. The 
main purpose of this study is to examine the 
estimation accuracy of the LASSO estimator 
especially in small data sets, and to compare 
different information criteria for model selection.  

In the simulations, the relationship between the 
change in the number of observations and the 
predictive accuracy was investigated basically. For 
this, GACV and BGACV information criteria were 
used in addition to the widely used AIC and BIC 
criteria in model selection. Using different 
information criteria, the more effective ones 
among them were determined. Therefore, LASSO 
estimates were compared according to the criteria 
by creating the states with different observation 
numbers for small data sets as the number of 
dependent variables fixed. And the results were 
examined. 

The rest of the paper is organized as follows. A 
brief review of the theory of the LASSO and 
Bernoulli logistic models is described in Section 2. 
Experiments are presented in Section 3. Results 
are given in Section 4 and Conclusion part is given 
in Section 5. 

2 Material and Method 

In this section the theory of the LASSO and some 
information criteria used for model selection are 
mentioned. 

2.1 LASSO 

Let 𝑥𝑖𝑗  be the standardized predictors and 𝑦𝑖 

response values for a linear regression model 
where 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝. The LASSO finds 

𝛽 = {𝛽𝑗} to minimize in Formula (1).  

∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑗 )
2

+  𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1

𝑛
İ=1   (1) 

The parameter 𝜆 ≥ 0 controls the amount of 
shrinkage and regularization [2]. When  λ 
increase, the more coefficients are forced to be 
zero. Setting 𝜆 = 0 turnes the LASSO estimator 
into OLS. The LASSO uses the 𝑙1 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 that 
yields a convex problem. Convexity is 
computationally efficient. 

2.2 Multivariate Bernoulli Logistic Model 

The multivariate Bernoulli distribution as a 
member of the exponential family is a way to 
formulate of the binary variables. An important 
property of that model is the marginal and 
conditional distributions of a subset of variables 
follow the multivariate Bernoulli distribution. 
When the Bernoulli distribution is extended to the 
multivariate Bernoulli distribution, it is concluded 
that the results obtained are similar to the logistic 
regression model. For this reason, when the 
dependent variable takes binary (0,1) values in 
the multivariate logistic model, the multivariate 
Bernoulli logistic regression model expression is 
used for this model [3].  

By adding the LASSO penalty term to the negative 
likelihood function of the Bernoulli logistic 
models, the objective function of the multivariate 
Bernoulli logistic LASSO models can be obtained 
as in Formula (2). 

 T(y,f )=l(y,f )+J


(f ) (2) 

where l(y, f) is the negative log-likelihood function 
and J


(f ) is the LASSO penalty term. LASSO 

estimates can be obtained for bivariate Bernoulli 
logistic LASSO models by minimizing the target 
function [4].  

3 Experiments 

In this study, four different information criteria 
were used for model selection; Akaike information 
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criterion (AIC) [5], Bayesian information criterion 
(BIC) [6], Generalized approximate cross 
validation criterion (GACV) [7] and Bayesian 
generalized approximate cross validation 
criterion (BGACV). 

The simulations were performed by using the 
“MVB” package in the R program, where the 
number of observations (n) for initial beta values 
was 50, 100, 200, 250, and 300, and the number of 
dependent variables (k) was 2, 3 and the number 
of independent variables (p) was 5. 

In addition, the repetitive simulations were 
performed in order to obtain LASSO estimates 
with AIC, BIC, GACV and BGACV criterion with 
different number of independent variables for the 
number of observations 50, 40 and 30 while 
keeping the number of dependent variables 
constant for 2 values. Estimation results were 
obtained by performing 100 repetitions for each 
case and using AIC, BIC, GACV and BGACV criteria 
in setting parameter selection. And the initial beta 
values were determined manually as in Table 1 for 
generating multivariate Bernoulli simulated data. 

Table 1. Initial beta values  for k=2 
 T=1 T=2 T=3 
C1 1,5 0 0 
C2 0 -1,5 0 
C3 0 0 0 
C4 0 0 0 
C5 0 0 1 

 

In Table 1, 𝑐𝑇 =  (𝑐0
𝑇 , … , 𝐶𝑃

𝑇) is the estimated 
coefficient vector, and beta values are 𝛽0 =
(𝛽0

1, 𝛽0
2, 𝛽0

12),…,𝛽5 = (𝛽5
1, 𝛽5

2, 𝛽5
12). The model 

predictive was obtained as linear predictors in 
generalized linear models and linear 
combinations of unknown parameters in linear 
predictors. 

4 Results 

The results for the simulations for different 
numbers of observations and dependent variable 
were given in Table 2. The results show the 
percentage value for each criterion of the 
predicted values obtained in 100 replicate 
experiments.  

Table 2. Accuracy results for p = 5, k = 2, 3, n = 50, 
100, 200, 250 and 300 

n k p AIC BIC GACV BGACV 
50 2 5 84,146 93,902 87,601 88,617 
50 3 5 93,870 96,580 92,580 94,870 

100 2 5 85,250 95,750 89,166 92,583 
100 3 5 94,612 97,645 92,870 94,516 
200 2 5 86,833 95,583 90,333 90,750 
200 3 5 95,376 97,602 96,989 97,956 
250 2 5 84,250 95,583 94,250 96,750 
250 3 5 92,419 97,741 97,419 99,677 
300 2 5 80,750 95,833 95,166 96,333 
300 3 5 93,118 97,634 99,247 99,462 

 

In Table 2, simulation results were given to 
examine the relationship between the number of 
observations and predictive accuracy. Therefore, 
the number of independent variables was kept 
constant (as p = 5). In addition, to examine the 
effect of the number of dependent variables on 
predictive accuracy, the number of dependent 
variables was determined as two values (as k = 2 
and k = 3).  

When the results in Table 2 are examined, it was 
observed that when the number of observations 
was small (when n = 50 and 100), stronger 
predictive accuracy were obtained with the BIC 
criterion. On the other hand, as the number of 
observations increased, stronger/more accurate 
estimation accuracy percentages were obtained 
with the BGACV criterion. Furthermore, the 
increase in the number of dependent variables 
also has a positive effect on predictive accuracy. 

In order to investigate the effect of the number of 
independent variables on the predictive accuracy, 
models were created according to the values of 
independent variables for the observations 50, 40, 
and 30 respectively, as the number of 
observations is fixed. 

While the number of dependent variables was 
fixed to 2, the model was estimated so that the 
number of observations was 50 and the number of 
independent variables was 5, 15, 20, 25, 50 and 
55, respectively. The results were given in Table 3. 
As p increased, the BGACV produced more 
powerful results. 
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Table 3. Accuracy results for k = 2, n = 50 and p = 
5, 15, 20, 25, 50 and 55 

n p AIC BIC GACV BGACV 
50 5 83,750 92,583 85,166 88,00 
50 15 60,714 98,809 95,238 90,47 
50 20 60,701 95,263 92,807 93,68 
50 25 72,777 95,416 97,777 98,33 
50 50 94,217 98,639 99,659 100,0 
50 55 92,592 93,518 98,765 99,69 

 

The model was estimated so that the number of 
observations was 40 and the number of 
independent variables was 5, 10, 20, 40, 45, 50 
and 60 respectively, while k=2.  The results were 
given in Table 4. It is shown that BGACV produced 
more powerful results while p increased. 

Table 4. Accuracy results for k = 2, n = 40 and p = 
5, 10, 20, 40, 45, 50 and 60 

n p AIC BIC GACV BGACV 
40 5 93,333 96,666 87,500 85,833 
40 10 92,592 98,148 95,925 94,444 
40 20 83,625 96,198 97,368 97,660 
40 40 92,307 97,863 97,435 98,717 
40 45 96,212 98,106 96,212 97,727 
40 50 94,897 94,897 98,979 99,319 
40 60 93,220 98,587 98,870 98,880 

 

The model was estimated so that the number of 
observations was 30 and the number of 
independent variables was 5, 10, 15, 30, 35, 40 
and 45 respectively, while k=2.  The results were 
given in Table 5. It is shown that BGACV produced 
more powerful results while p increased for a 
sample size is fixed. 

Table 5. Criteria when k = 2, n = 30 and p = 5, 10, 
15, 30, 35, 40 and 45 

n p AIC BIC GACV BGACV 
30 5 90,833 93,333 81,666 77,500 
30 10 81,111 95,185 91,111 92,592 
30 15 73,809 80,952 94,047 95,238 
30 30 86,781 96,551 98,275 97,701 
30 35 95,588 93,627 98,039 98,040 
30 40 97,008 97,435 98,717 99,572 
30 45 96,212 98,106 98,484 98,863 

 

5 Conclusion 

As a result; the LASSO estimator is widely used, 
especially in large data sets, because it yields 

simpler models and more reliable results. In this 
study, the LASSO estimator has been studied on 
smaller data sets and also in p>n states. When 
dependent variable binary values were obtained, 
more stable and stronger results were obtained 
with GACV and BGACV criteria as an alternative to 
AIC and BIC criteria when LASSO predictive 
models were obtained. For further studies, the 
BGACV criterion can be investigated on different 
samples and models. 
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