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Abstract 

The classification methods consider the probability of predicting the majority class to be 

high when the number of class observations is different. To address this problem, there are some 

methods such as resampling methods in the literature. Undersampling, one of the resampling 

methods, creates balance by removing data from the majority class. This study aims to compare 

different optimization methods to determine the most suitable observations to be taken from the 

majority class while undersampling. Firstly, a simple simulation study was conducted and graphs 

were used to analyze the discrepancy between the resampled datasets. Then, different classifier 

models were constructed for different imbalanced data sets. In these models, random 

undersampling, undersampling with genetic algorithm, undersampling with differential evolution 

algorithm, undersampling with an artificial bee colony, and under-sampling with particle herd 

optimization were compared. The results were given rank numbers differing depending on the 
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classifiers and data sets and a general mean rank was obtained. As a result, when undersampling, 

artificial bee colony was seen to perform better than other methods of optimization. 

Keywords: Imbalanced classes; Classification; Undersampling; Optimization. 

Dengesiz Sınıflamada Optimizasyona Dayalı Azörnekleme 

Öz 

Sınıflama yöntemleri, sınıf gözlemlerinin sayısı farklı olduğunda çoğunluk sınıfını tahmin 

etme olasılığının yüksek olduğunu düşünür. Bu sorunu gidermek için literatürde yeniden 

örnekleme yöntemleri gibi bazı yöntemler bulunmaktadır. Yeniden örnekleme yöntemlerinden 

biri olan azörnekleme, çoğunluk sınıfından verileri silerek denge oluşturur. Bu çalışma, az 

örnekleme yapılırken çoğunluk sınıftan alınacak en uygun gözlemleri belirlemek için farklı 

optimizasyon yöntemlerini karşılaştırmayı amaçlamaktadır. İlk olarak, basit bir simülasyon 

çalışması yapılmış ve yeniden örneklenen veri setleri arasındaki farklılığı analiz etmek için 

grafikler kullanılmıştır. Daha sonra, farklı dengesiz veri setleri için farklı sınıflayıcı modelleri 

oluşturulmuştur. Bu modellerde rastgele azörnekleme, genetik algoritma ile azörnekleme, 

diferansiyel evrim algoritması ile azörnekleme, yapay arı kolonisi ile azörnekleme ve parçacık 

sürüsü optimizasyonu ile azörnekleme karşılaştırılmıştır. Sonuçlara sınıflandırıcılara ve veri 

setlerine göre değişen sıra numaraları verilmiş ve genel bir ortalama sıra elde edilmiştir. Sonuç 

olarak, yetersiz örnekleme yapıldığında, yapay arı kolonisinin diğer optimizasyon 

yöntemlerinden daha iyi performans gösterdiği görülmüştür. 

Anahtar Kelimeler: Dengesiz sınıflar; Sınıflama; Azörnekleme; Optimizasyon. 

1. Introduction 

Class imbalance is one of the major problems in machine learning. Class imbalance leads 

to bias in the learning process from the data set. This bias causes incorrect predictions and makes 

it difficult to evaluate the model. Resampling is one of the most frequently used methods for 

dealing with this problem. In this method, balance is achieved by increasing the number of data 

of minority class observations and/or by reducing the number of data of majority class 

observations. 

Undersampling methods are the methods that provide balance by reducing the majority 

class observations. Oversampling methods are the methods that provide balance by increasing the 

minority class observations.  The most basic one of the undersampling methods is random 

undersampling (RUS) method. It is often used in literature to handle class imbalance problem. 
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For example, Chen et al. [1] reduced the aliasing artifacts and improved image quality by using a 

hybrid scheme in the form of RUS-based singular value decomposition and compressed sensing. 

Liu and Tsoumakas [2] used the RUS to improve the learning method of the Ensemble of 

Classifier Chains against class imbalance. Noise detection is a popular approach to select samples 

to be removed. Tomek Link [3] is one of these noise detection methods frequently used in the 

literature to select samples to be discarded in undersampling applications [4-6]. Edited Nearest 

Neighbor [7] is another noise detection method that can be used for undersampling. It uses three-

nearest neighbor and single-nearest neighbor sequentially to reduce the number of samples. 

Laurikkala [8] proposed a neighborhood cleaning rule to undersample the majority class. The 

method uses Edited Nearest Neighbor to remove noisy samples not only in the majority class but 

also in the minority class. 

Removal of observations to achieve class balance causes undesirable loss of information 

available. To minimize the loss of information, it would be more appropriate to select the 

observations by non-random methods. Many methods have been suggested in the literature for 

this purpose [9-13]. The purpose of this study is to use optimization to select observations that 

are to be removed in undersampling. Optimization is the process of achieving the most appropriate 

solution for a specific purpose under certain constraints. In other words, optimization is the 

process of obtaining the best result under given conditions. Different optimization techniques 

have been developed to solve the problems encountered. There are two types of algorithms for 

solving optimization problems. One of these is the classical algorithms that can obtain the optimal 

solution by scanning the entire solution space. The other is the heuristic algorithms which 

intuitively reach the solution in a short time without scanning the solution's entire space. Genetic 

Algorithm (GA) [14], Particle Swarm Optimization (PSO) [15], Differential Evolution Algorithm 

(DE) [16], and Artificial Bee Colony (ABC) [17] are some examples of heuristic algorithms.  

Methods of optimization were used in various ways when applying methods of resampling. 

García and Herrera [18] have proposed eight different methods for selecting the observations to 

be taken in undersampling with evolutionary algorithms. Inspired by this method, Roshan and 

Asadi [19] increased the performance of bagging by detecting the best performing bonds with the 

multipurpose evolutionary algorithm. Yu et al. [20] improved the performance of the Support 

Vector Machines classifier in imbalanced class data sets by setting an optimized decision limit. 

In the introductory section of this study, class imbalance problem and optimization methods 

are mentioned and related studies in the literature are given. In the second section, the problem of 

class imbalance is explained. Then, random sampling and sampling methods with optimization 

are introduced. In the third section, the performance criteria used in the model evaluation while 
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there is a class imbalance are explained. In the fourth section, models with different data sets and 

different classifiers are formed. In these models, performance results are obtained with and 

without resampling. In the fifth section, the averages of all results are given and the significance 

of the difference between these results is tested. Finally, the results are compared and suggestions 

are made in the sixth section. 

2. Materials and Methods 

2.1. Class imbalance problem 

Algorithms, where the dependent variable is categorical and where these categories are 

estimated using certain independent variables are referred to as classification. In classification, 

the categories included in the dependent variable take the class name. Classification methods were 

developed to determine the order in the observation data and categorize the sample based on this 

order [21]. Most classification methods establish a model assuming that the number of 

observations of these classes are equal. In this case, when the number of observations in the 

classes varies, the models show bias in favor of the class with many observations. This is called 

class imbalance problem. In almost all actual data, the number of observations of classes is not 

equal, i.e., there is a class imbalance. However, the term class imbalance is used for situations 

where a significant imbalance rate exists. This is called between-classes imbalance and is a 

condition often encountered [22]. When there is an inter-classes imbalance, the class with fewer 

observations is called the positive class, and the class with more observations is called the 

negative class. There are some methods used to solve the problem of class imbalance. These 

methods include the following: 

• In resampling methods, data derivation or data reduction may be applied until the data 

is balanced [23]. 

• Different weights can be given to the observations. 

• Different weights can be given to the classes. 

• By using ensemble algorithms, positive classes can be predicted more easily [24]. 

Resampling methods are methods in which the data set is modified to make the observation 

classes in the data set more balanced [25]. 

The resampling method can be grouped under three titles. These are oversampling, 

undersampling, and hybrid methods. In oversampling methods, the aim is to increase the balance 

of the positive class data in a certain way. In undersampling methods, some observations from 
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the majority class observations are supposed to be balanced either randomly or in a controlled 

way. In hybrid methods, undersampling and oversampling methods are used in conjunction. 

2.2. Random undersampling 

The most basic of undersampling methods is the random undersampling method. In this 

method, a certain amount of data is randomly selected from the negative class and the remainder 

is removed from the data set. Thus, balance can be ensured. RUS deletes the observation from the 

original data set. The procedure for RUS is given in Algorithm 1. Random observations from 𝑇!"# 

of the entered 𝑇 training set are selected and removed. However, discarding existing information 

in this method causes loss of information. This is also undesirable. Consequently, RUS is a simple 

method of adjusting the balance of the 𝑇 data set [25]. 

Algorithm 1: RUS (Exact Balance) 

Input :  Training dataset, 𝑇 
Function :  
 1. 𝑇!"# and 𝑇$%& ← datasets belonging to classes 

 2. 𝑁!"# and 𝑁$%& ←number of observations in 𝑇!"# and 𝑇$%& respectively 

 3. 𝐿 = 𝑁!"# −𝑁$%& (Number of samples required for exact balance) 

 4. 𝑈 ← 𝐿-length series randomly selected within 1,2, … ,𝑁!"# series  

 5. 𝑇!"#'! ← 𝑇!"# after discarding samples selected in 𝑈 

Output : 𝑇'! ← 𝑇!"#'!  and 𝑇$%& datasets together 

2.3. Undersampling with optimization 

The purpose of this method is to determine the most useful observations to be taken from 

samples of negative class. For this, it is necessary to determine the data set, which provides the 

best separation in the 𝑇 training data set. Algorithm 2 specifies the degree to which the separation 

is accomplished. This algorithm is the objective function of the optimization method used in 

Algorithm 3. Vector 𝑍 with length 𝑁!"# to be tested in optimization are the parameters to be 

optimized. These parameters are set as 0 ≤ 𝑍$ ≤ 1, 𝑖 = 1,2, … ,𝑁!"# in optimization method. 𝑍 

parameters are rounded in the objective function. Thus, all parameters take values of either 0 or 

1. This is because the method of optimization to be used may not optimize discrete parameters. 

Data sets of negative and positive classes are determined and two data sets are notated as 𝑇!"# 

and 𝑇%&' are obtained. Then, negative observations in 𝑇!"#, which have a value of 1 in the 𝑍 

vector, are removed and 𝑇!"#(!  is obtained. Then 𝑇!"#(!  and 𝑇%&' are combined and the new 

undersampled data set, 𝑇(! is obtained. A decision tree (cp = 0.01), 𝐾, is trained in 𝑇!"#(! . The 
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performance of 𝐾 in  dataset 𝑇(! is used to determine the performance of the resampling method. 

For this, independent variables of 𝑇(! are used to obtain the predictions of 𝐾 and area under ROC 

curve (AUC) is used to measure the performance. The subset 𝑇(! of 𝑇, maximizing the AUC 

level obtained from the estimation gives us the optimal subset. The performance of 𝑇(! obtained 

with this method depends on multiple factors. The optimization method to be used is, obviously, 

one of the factors. Different optimization methods may find different subsets. Iteration numbers 

in optimization methods may change the results. The type of the classifier (CART decision tree 

in this case) and the evaluation criteria (AUC in this case) are also important factors.  

Undersampling with the optimization method optimizes too many parameters. Therefore, 

it takes too much time compared to resampling methods without optimization. Too many 

parameters need too many combinations and more iterations are required to optimize them. Each 

iteration also takes longer because the parameter number is high.  

Algorithm 2: Objective Function of undersampling with optimization  

Input : Train data set, 𝑇; 𝑍 vector of length 𝑁!"# with values in range [0,1] 

Function :  

 1. 𝑍 = ⌈𝑍 + 0.5⌉ (rounding) 

 2. 𝑇!"# and 𝑇$%& ← datasets of classes 

 3. 𝑇!"#'! ← 𝑇!"# observations corresponding to value of 1 in the vector 𝑍  

 4. 𝑇'! ← 𝑇!"#'!  and 𝑇$%& datasets together 

 5. 𝐾 ←	decision tree model trained in	𝑇'! 

 6. 𝑃𝑟(𝑌 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑐𝑙𝑎𝑠𝑠|𝑋 = 𝑥) ← positive class probabilities of 𝐾 

Output : 𝑃𝑒𝑟𝑓 ←AUC calculated using 𝑃𝑟(𝑌 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑐𝑙𝑎𝑠𝑠|𝑋 = 𝑥) 

 

Algorithm 3: Undersampling with optimization 

Input : Train data set, 𝑇 

Function :  

 1. 𝑇!"# and 𝑇$%& ← datasets of classes 

 2. 𝑁!"# and 𝑁$%& ← number of observations in 𝑇!"# and 𝑇$%& respectively 

 3. Optimize vector 0 ≤ 𝑍( ≤ 1, 𝑖 = 1,2, … ,𝑁!"#	 using the objective 

function in Algorithm 2 

 3. 𝑍 ← optimized parameters 

 4. 𝑍%$) = ⌈𝑍 + 0.5⌉ (rounding) 

 5. 𝑇!"#'! ← 𝑇!"# observations corresponding to the value of 1 in the vector 

𝑍%$)  
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Output : 𝑇'! ← 𝑇!"#'!  and 𝑇$%& datasets together 

2.4 Performance criteria 

In order to determine the classification models developed for a data set with class imbalance 

problem, the most suitable performance criterion should be selected. Although there are many 

performance criteria in the literature, 𝐹), G-mean and AUC are frequently used in imbalanced 

data sets instead of misleading criteria such as accuracy or error rate [26, 27, 28, 29, 30]. 𝐹) and 

G-mean are calculated using confusion matrix. The confusion matrix is given in Table 1. Some 

of the performance criteria that were calculated through confusion matrix are presented in Table 

2. Since accuracy is biased towards the negative class, imbalanced data sets produce biased 

results. While sensitivity and precision consider positive class performance to be very high, 

specificity gives the negative class more importance. G-mean is the geometric mean of sensitivity 

and specificity. 𝐹) score is the harmonic mean of sensitivity and precision. Since G-mean and 𝐹) 

consider both classes, they give a more realistic and general performance in imbalanced datasets. 

Table 1: Confusion matrix 

 Prediction 
Positive Negative 

Truth Positive True positive (TP) False positive (FP) 
Negative False negative (FN) True negative (TN) 

 

Table 2: Some performance criteria used to evaluate classification models 

Criterion Formula 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

True positive rate (Sensitivity)  
𝑇𝑃

𝑇𝑃 + 𝑇𝑌 

True negative rate (Specificity)  
𝑇𝑁

𝐹𝑁 + 𝑇𝑁 

 Positive prediction value (Precision)  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

G-mean JSensitivity × Specificity	 

𝐹* 
2

1
Precision +

1
Sensitivity

 

 

AUC is the most commonly used criterion for graphical performance. Calculation of AUC 

can be given as follows: 
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 𝐴𝑈𝐶\ =]𝑅𝑂𝐶\(𝑡)𝑑𝑡
*

+

 (1) 

3. Simulation 

Figure 1 shows the flow chart of forming the model with or without resampling. The study 

was conducted on simulation data and then 11 different data sets which are available online [31]. 

Table 3 shows the structural characteristics of the data sets. Undersampling methods were applied 

to achieve balance in the train dataset by removing observations from the negative class. Methods 

of undersampling used are; RUS, undersampling with genetic algorithm (US with GA), 

undersampling with differential evolution algorithm (US with DE), undersampling with an 

artificial bee colony (US with ABC), undersampling with particle flock optimization (US with 

PSO). 

 
Figure 1: Flow chart of modelling with and without 
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Figure 2: Decision boundaries of radial SVM in the simulation data set (“+” signs indicate test set, 
circles indicate training set) 
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The maximum number of iterations was set to 100 in all optimization methods. The class 

observations were made in the simulation study as two dimensional 𝑋!"#~𝑁(0,3) with length 

500 and 𝑋%&'~𝑁(5,2) with length 20. The training and test data set were stratified as 90% and 

10% respectively. The radial SVM model was formed on the imbalanced training set. Secondly, 

the balance was achieved with RUS, and the model was formed. Subsequently, four different 

optimization methods were used and undersamplings were applied. Figure 2 shows the decision 

boundaries and performances of the models. Although according to the original data set, there 

was no increase in 𝐹) score, US with GA and US with ABC reached 0.94 AUC. Compared to 

other methods, US with PSO was more inefficient in the simulation study. In the datasets 

undersampled by optimization methods, it is seen that less data is discarded from the majority 

class compared to the RUS method. If we consider that the US with GA, US with DE, and US 

with ABC methods perform close to or better than RUS, we see that we can achieve the desired 

results with less information loss. But the same is difficult to say for US with PSO. 

Table 3: Structural properties of data sets 

Dataset Independent 
Variable 
Number 

𝑁 𝑁!"# 𝑁$%& Imbalance Ratio 	
(𝑁$%&/𝑁!"#) 

breast 9 277 81 196 2.420 
bupa 5 345 145 200 1.379 
cleveland 5 296 34 262 7.706 
ecoli 5 335 34 301 8.853 
haberman 3 305 81 224 2.765 
Sonar 60 120 23 97 4.217 
glass0 9 214 70 144 2.057 
kyphosis 3 81 17 64 3.765 
newthyroid1 5 215 35 180 5.143 
Seeds 7 199 66 133 2.015 
Vertebral 6 310 100 210 2.100 

 

Eleven different data sets and 5 different classifiers were used to analyze the performances 

of these methods. AUC, 𝐹) and G-mean criteria were used to evaluate the performance of the 

models. The 10-fold cross-validity was repeated 10 times and the performance criteria were 

averaged. In addition, the performance of the methods was graded from 1 to 6 with 10 × 10 = 100 

models set up for each case. The sequence numbers were properly synchronized when the same 

performances were achieved in this ranking. To give an example, all (1 + 2 + 3) / 3 = 2 were 

assigned rank numbers when the three methods were in the first place, and the subsequent 

methods were assigned 4-5-6 rank numbers. The obtained rank numbers were averaged for 100 

models and added to the results. 
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In the study, J48 decision tree (C = 0.25, M = 2), K nearest neighborhood (KNN, K = 5), 

radial support vector machines (SVM, σ = 1, C = 0.25), naive bayes and logistic regression 

classifiers were used.  

The AUC measurements of the J48 classifier are given in Table 4 and the average rank in 

Table 5. In the 11 data sets, the best results were obtained once without resampling, four times in 

RUS, three times in US with GA, one time in US with DE, and two times in US with ABC. The 

best ranking was achieved with US with GA, and the worst with US with PSO when the rankings 

were analyzed. While GA was the optimization method that gave the best result in AUC rankings, 

the method that gave the worst result was PSO. 

Table 4: AUC values for J48 classifier 
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.6168±0.11 0.6069±0.1225 0.6047±0.1292 0.629±0.1082 0.6192±0.1145 0.6262±0.1214 
bupa 0.6168±0.09 0.6285±0.1023 0.6126±0.0972 0.614±0.0981 0.6123±0.0962 0.617±0.0932 
cleveland 0.5209±0.0575 0.5878±0.1374 0.5288±0.1267 0.5455±0.1177 0.5379±0.1145 0.525±0.1075 
ecoli 0.7921±0.1858 0.7988±0.1271 0.7949±0.1511 0.7888±0.1471 0.803±0.1659 0.7587±0.1748 
haberman 0.5727±0.0953 0.6269±0.0979 0.6137±0.1087 0.6147±0.1144 0.6193±0.1008 0.58±0.0995 
Sonar 0.6982±0.1976 0.7125±0.1931 0.7627±0.1898 0.7598±0.1786 0.7164±0.2081 0.7492±0.1917 
glass0 0.7939±0.0975 0.7874±0.0912 0.8049±0.1035 0.7973±0.089 0.7868±0.1028 0.7999±0.1031 
kyphosis 0.5905±0.1948 0.7181±0.1765 0.6371±0.2016 0.6015±0.1819 0.6461±0.193 0.5886±0.1787 
newthyroid1 0.9501±0.0899 0.937±0.0734 0.9569±0.0784 0.95±0.0808 0.94±0.0912 0.9547±0.0735 
Seeds 0.918±0.0833 0.8965±0.0821 0.9024±0.079 0.9085±0.0709 0.9125±0.0811 0.9165±0.0762 
Vertebral 0.8384±0.0862 0.8385±0.0755 0.8399±0.0814 0.8389±0.0792 0.8474±0.0863 0.8261±0.0924 

 

Table 5: AUC mean ranks for J48 classifier 

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 3.68 3.565 3.75 3.2 3.445 3.36 
bupa 3.56 3.24 3.615 3.525 3.545 3.515 
cleveland 3.715 2.785 3.65 3.39 3.685 3.775 
ecoli 3.245 3.58 3.51 3.66 3.35 3.655 
haberman 3.855 2.98 3.215 3.42 3.31 4.22 
Sonar 3.655 3.97 3.3 3.295 3.535 3.245 
glass0 3.505 3.685 3.275 3.57 3.715 3.25 
kyphosis 3.965 2.67 3.425 3.72 3.305 3.915 
newthyroid1 3.02 4.205 3.29 3.535 3.535 3.415 
Seeds 3.18 3.935 3.57 3.645 3.415 3.255 
Vertebral 3.385 3.68 3.47 3.505 3.195 3.765 
Mean 3.524 3.481 3.461 3.497 3.458 3.579 

 

The 𝐹) measurements of the J48 classifier are given in Table 6 and the average rank in 

Table 7. In the 11 datasets, the best results were obtained ten times without resampling and one 

time in US with GA. In terms of rank averages, the best ranking was reached when no resampling 

was performed, while the worst ranking was achieved when RUS was applied. While the 

optimization method that gave the best result in 𝐹) rankings was ABC, the method that gave the 

worst result was GA. 
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Table 6: 𝐹* values for J48 classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.8206±0.046 0.7038±0.0929 0.7608±0.0756 0.7708±0.0749 0.755±0.084 0.7637±0.0753 
bupa 0.7063±0.0706 0.6644±0.107 0.5852±0.1437 0.5763±0.1495 0.6267±0.1624 0.6363±0.1305 
cleveland 0.9337±0.0162 0.7415±0.1415 0.9102±0.0424 0.9255±0.0258 0.9137±0.037 0.9173±0.0362 
ecoli 0.9614±0.0196 0.8683±0.0629 0.954±0.0271 0.9549±0.0251 0.9533±0.027 0.9563±0.028 
haberman 0.8084±0.0537 0.7604±0.075 0.7859±0.0684 0.7791±0.0895 0.7821±0.0734 0.7803±0.0716 
Sonar 0.5043±0.2811 0.4947±0.2217 0.5827±0.2566 0.5709±0.2669 0.5506±0.2752 0.5758±0.2785 
glass0 0.848±0.0655 0.7997±0.0696 0.8285±0.0821 0.8136±0.0798 0.8278±0.0729 0.8218±0.0814 
kyphosis 0.8298±0.0831 0.7222±0.1746 0.7931±0.1185 0.7841±0.1371 0.7891±0.1377 0.7907±0.1235 
newthyroid1 0.9837±0.0219 0.9601±0.0354 0.9787±0.0249 0.976±0.0244 0.9753±0.0276 0.9755±0.026 
Seeds 0.89±0.0949 0.8404±0.1068 0.8523±0.099 0.8563±0.091 0.8784±0.0931 0.8662±0.0997 
Vertebral 0.8668±0.0547 0.8377±0.0659 0.8496±0.0561 0.8429±0.0588 0.8637±0.0551 0.8416±0.0605 

 

Table 7: 𝐹* mean ranks for J48 classifier 

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 1.945 4.82 3.66 3.325 3.615 3.635 
bupa 2.48 3.07 4.21 4.325 3.38 3.535 
cleveland 2.415 5.74 3.44 2.915 3.315 3.175 
ecoli 2.625 5.835 3.16 3.215 3.245 2.92 
haberman 2.555 4.22 3.45 3.57 3.525 3.68 
Sonar 3.765 4.145 3.305 3.24 3.435 3.11 
glass0 2.735 4.2 3.39 3.9 3.34 3.435 
kyphosis 2.805 4.28 3.615 3.585 3.35 3.365 
newthyroid1 3.025 4.345 3.305 3.495 3.385 3.445 
Seeds 2.93 3.965 3.79 3.775 3.175 3.365 
Vertebral 2.885 3.82 3.56 3.885 2.92 3.93 
Mean 2.742 4.404 3.535 3.566 3.335 3.418 

 

The G-mean measurements of the J48 classifier are given in Table 8 and the average rank 

in Table 9. In the 11 datasets, the best results were obtained two times without resampling, six 

times in RUS, two times in US with GA, and one time in US with DE in 11 data sets. When 

examining the averages of the rankings, it was seen that the best ranking was achieved when 

applying RUS, and the worst ranking was achieved when no resampling was applied. While GA 

was the optimization method that gave the best result in G-mean rankings, the method that gave 

the worst result was PSO.  

Table 8: G-mean values for J48 classifier 
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.51±0.1689 0.5718±0.1185 0.5602±0.1376 0.5841±0.1292 0.5822±0.1175 0.5698±0.1514 
bupa 0.5841±0.0857 0.5897±0.1153 0.5581±0.119 0.555±0.1207 0.5619±0.1108 0.569±0.1021 
cleveland 0.0203±0.1001 0.5257±0.2173 0.1597±0.2633 0.1614±0.2603 0.1577±0.2675 0.1378±0.2534 
ecoli 0.704±0.233 0.7902±0.1074 0.7423±0.1893 0.738±0.2026 0.7228±0.2308 0.7113±0.2235 
haberman 0.4054±0.2724 0.6052±0.1263 0.5796±0.1355 0.5679±0.153 0.5795±0.1466 0.5355±0.1505 
Sonar 0.6133±0.3036 0.6766±0.236 0.7191±0.2513 0.6998±0.2701 0.6691±0.2825 0.6947±0.2794 
glass0 0.7812±0.0946 0.7706±0.0801 0.7916±0.1016 0.7765±0.1209 0.7741±0.0982 0.774±0.0999 
kyphosis 0.3025±0.3502 0.6312±0.2596 0.4504±0.3615 0.3735±0.3632 0.4316±0.3576 0.3402±0.362 
newthyroid1 0.9434±0.1019 0.9314±0.0818 0.9419±0.0994 0.9314±0.1059 0.9239±0.113 0.9338±0.0981 
Seeds 0.9114±0.0753 0.8821±0.0835 0.8863±0.0783 0.8912±0.0709 0.9046±0.0735 0.8974±0.0789 
Vertebral 0.7471±0.0987 0.8054±0.076 0.7801±0.0818 0.7854±0.0837 0.7559±0.0982 0.7657±0.0903 
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Table 9: G-mean rank means for J48 classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 4.22 3.47 3.67 3.12 3.275 3.245 
bupa 3.345 3.125 3.625 3.83 3.53 3.545 
cleveland 4.355 1.745 3.71 3.645 3.715 3.83 
ecoli 3.485 3.4 3.395 3.53 3.55 3.64 
haberman 4.04 2.84 3.295 3.545 3.245 4.035 
Sonar 3.83 4.01 3.295 3.23 3.49 3.145 
glass0 3.43 3.84 3.245 3.5 3.43 3.555 
kyphosis 4.095 2.655 3.275 3.635 3.455 3.885 
newthyroid1 2.965 4.035 3.295 3.575 3.605 3.525 
Seeds 2.95 3.97 3.795 3.77 3.17 3.345 
Vertebral 4.21 2.755 3.235 3.255 3.915 3.63 
Mean 3.72 3.259 3.44 3.512 3.489 3.58 

The AUC measurements of the KNN classifier are given in Table 10 and the average ranks 

are given in Table 11. In the 11 datasets, the best results were obtained five times without 

resampling, four times with RUS, and two times in US with GA. When examining the averages 

of the rankings, it was seen that the best ranking was achieved without resampling and the worst 

ranking was achieved when RUS was applied. While the optimization method which gave the 

best result in AUC rankings was ABC, the method that gave the worst result was PSO. 

Table 10: AUC values for KNN classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.6473±0.1052 0.6617±0.1104 0.6553±0.101 0.6584±0.0966 0.6573±0.0943 0.6611±0.1091 
bupa 0.6614±0.0842 0.6648±0.0862 0.6518±0.0853 0.6613±0.085 0.6611±0.0874 0.6573±0.0785 
cleveland 0.5378±0.1342 0.5581±0.1596 0.5418±0.1415 0.551±0.1387 0.5492±0.1483 0.5322±0.1363 
ecoli 0.8913±0.0988 0.9134±0.0595 0.9092±0.0768 0.9156±0.0737 0.91±0.0804 0.9099±0.0764 
haberman 0.6531±0.0961 0.6529±0.1051 0.6443±0.1013 0.651±0.1044 0.648±0.1051 0.6456±0.105 
Sonar 0.917±0.1157 0.8745±0.1331 0.9036±0.127 0.8969±0.1315 0.9046±0.1217 0.9023±0.1257 
glass0 0.8749±0.0823 0.8528±0.0779 0.8541±0.0834 0.8526±0.0819 0.864±0.0857 0.8454±0.0867 
kyphosis 0.6472±0.2394 0.6596±0.2136 0.6611±0.237 0.647±0.2407 0.6448±0.2327 0.6402±0.2424 
newthyroid1 0.9919±0.0409 0.9793±0.0459 0.9878±0.0405 0.9878±0.0288 0.9869±0.0414 0.987±0.0412 
Seeds 0.9693±0.0391 0.9725±0.0336 0.9734±0.0337 0.9731±0.0319 0.969±0.0395 0.97±0.0354 
Vertebral 0.9092±0.0525 0.9036±0.0477 0.9044±0.0548 0.9074±0.0495 0.9086±0.0541 0.907±0.0505 

 

Table 11: AUC rank means for KNN classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 3.88 3.29 3.505 3.435 3.61 3.28 
bupa 3.36 3.4 3.775 3.415 3.535 3.515 
cleveland 3.52 3.325 3.53 3.47 3.335 3.82 
ecoli 3.555 3.705 3.435 3.23 3.44 3.635 
haberman 3.31 3.42 3.785 3.42 3.49 3.575 
Sonar 2.745  4.41 3.385 3.635 3.31 3.515 
glass0 2.455 3.81 3.75 3.895 3.03 4.06 
kyphosis 3.49 3.495 3.325 3.495 3.575 3.62 
newthyroid1 2.69 4.28 3.48 3.61 3.49 3.45 
Seeds 3.53 3.545 3.435 3.29 3.465 3.735 
Vertebral 3.155 3.855 3.62 3.63 3.21 3.53 
Mean 3.245 3.685 3.548 3.502 3.408 3.612 
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The 𝐹) measurements of the KNN classifier are given in Table 12, and the average ranks 

are given in Table 13. In the 11 datasets, the best results were obtained ten times without 

resampling and one time in RUS. When examining the average rankings, it was seen that the best 

ranking was achieved without resampling and the worst ranking was achieved when RUS was 

applied. While the optimization method which gave the best result in 𝐹) rankings was ABC, the 

method that gave the worst result was DE. 

Table 12: 𝐹* values for KNN classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.8164±0.0446 0.7128±0.0781 0.7607±0.0682 0.7591±0.072 0.7488±0.0757 0.7597±0.0773 
bupa 0.7151±0.064 0.6658±0.0834 0.6084±0.1053 0.5954±0.1084 0.6768±0.1044 0.6336±0.1002 
cleveland 0.9341±0.0134 0.7179±0.0885 0.9036±0.0336 0.9041±0.0334 0.9033±0.0306 0.9092±0.0286 
ecoli 0.9561±0.0236 0.8896±0.0506 0.9525±0.0244 0.9527±0.0277 0.9528±0.0261 0.953±0.027 
haberman 0.8228±0.0467 0.7198±0.0718 0.7768±0.0571 0.7694±0.0669 0.7742±0.0657 0.771±0.0621 
Sonar 0.7201±0.2115 0.5336±0.1536 0.6404±0.2064 0.6122±0.1911 0.6593±0.2196 0.62±0.1903 
glass0 0.8368±0.0693 0.771±0.0898 0.7869±0.1011 0.7832±0.0854 0.8124±0.0847 0.7744±0.0918 
kyphosis 0.8549±0.0627 0.6627±0.1778 0.8271±0.0997 0.8094±0.1187 0.8239±0.0966 0.806±0.1107 
newthyroid1 0.9776±0.0213 0.961±0.0343 0.9757±0.0246 0.9758±0.0261 0.9752±0.026 0.9743±0.0263 
Seeds 0.8397±0.1078 0.8703±0.0954 0.8586±0.0993 0.8619±0.1029 0.8522±0.0981 0.8566±0.0992 
Vertebral 0.8795±0.0507 0.8464±0.056 0.8551±0.0599 0.8589±0.0573 0.8741±0.0543 0.8657±0.0562 

 

Table 13: 𝐹* rank means for KNN classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 1.815 4.795 3.565 3.545 3.79 3.49 
bupa 1.91 3.205 4.425 4.78 2.73 3.95 
cleveland 1.6 6 3.465 3.425 3.405 3.105 
ecoli 2.625 5.86 3.275 3.06 3.105 3.075 
haberman 1.625 5.4 3.345 3.62 3.445 3.565 
Sonar 2.14 5.055 3.27 3.775 3.09 3.67 
glass0 2.13 4.355 3.68 3.855 2.895 4.085 
kyphosis 2.47 5.285 3.14 3.315 3.23 3.56 
newthyroid1 3.155 4.355 3.36 3.315 3.4 3.415 
Seeds 3.855 3.18 3.47 3.42 3.55 3.525 
Vertebral 2.665 4.405 3.925 3.625 2.995 3.385 
Mean 2.363 4.718 3.538 3.612 3.24 3.53 

The G-mean measurements of the KNN classifier are given in Table 14, and the average 

ranks are given in Table 15. In the 11 data sets, the best results were achieved once without 

resampling, seven times in RUS, and two times in US with DE. When the rank averages are 

examined, it was seen that the best ranking is reached when RUS is applied and the worst ranking 

is reached when no resampling is applied. While the optimization method which gave the best 

result in G-mean rankings was DE, the method that gave the worst result was PSO. 

Table 14: G-mean values for KNN classifier 

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.491±0.1433 0.6063±0.1029 0.5965±0.121 0.6024±0.1235 0.5889±0.1112 0.5852±0.1324 
bupa 0.6066±0.0887 0.62±0.0858 0.6017±0.0882 0.5993±0.0876 0.6065±0.0915 0.6116±0.0845 
cleveland 0±0 0.4971±0.2218 0.0627±0.172 0.0399±0.1362 0.0227±0.115 0.036±0.1321 
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ecoli 0.6932±0.2592 0.8305±0.1195 0.7691±0.2262 0.7959±0.1877 0.7573±0.2195 0.7694±0.2189 
haberman 0.4515±0.1882 0.5998±0.1053 0.5593±0.1238 0.5744±0.1242 0.5837±0.123 0.5486±0.1303 
Sonar 0.8406±0.1701 0.7461±0.1368 0.8062±0.1682 0.7983±0.1487 0.8127±0.1711 0.8013±0.165 
glass0 0.7489±0.1184 0.7562±0.0934 0.7609±0.1004 0.7613±0.0898 0.7484±0.1086 0.7436±0.0973 
kyphosis 0.0932±0.2581 0.538±0.3016 0.2994±0.3863 0.3243±0.3748 0.2402±0.3525 0.2942±0.357 
newthyroid1 0.8628±0.1572 0.8996±0.1166 0.8929±0.1299 0.8905±0.1346 0.8896±0.1277 0.8888±0.1323 
Seeds 0.8704±0.0871 0.9037±0.0733 0.8915±0.0774 0.8963±0.0809 0.884±0.0806 0.8901±0.0772 
Vertebral 0.8097±0.082 0.8301±0.0622 0.8246±0.0711 0.8324±0.0637 0.814±0.0776 0.8286±0.0722 

 

Table 15: G-mean rank means for KNN classifier  

Dataset No resampling RUS GA DE ABC PSO 
breast 4.765 3.25 3.135 3.15 3.31 3.39 
bupa 3.5 3.115 3.605 3.745 3.55 3.485 
cleveland 4.095 1.38 3.78 3.875 3.975 3.895 
ecoli 3.905 3.205 3.49 3.275 3.65 3.475 
haberman 4.91 2.84 3.435 3.185 2.955 3.675 
Sonar 2.17 4.995 3.28 3.775 3.105 3.675 
glass0 3.34 3.565 3.325 3.365 3.54 3.865 
kyphosis 4.315 2.585 3.395 3.35 3.785 3.57 
newthyroid1 3.425 4.015 3.38 3.345 3.4 3.435 
Seeds 3.885 3.17 3.46 3.42 3.55 3.515 
Vertebral 3.76 3.38 3.59 3.275 3.665 3.33 
Mean 3.825 3.227 3.443 3.433 3.499 3.574 

The AUC measurements of the radial SVM classifier are given in Table 16, and the average 

ranks are given in Table 17. In the 11 datasets, the best results were obtained five times without 

resampling, four times in RUS, and two times in US with GA. When the averages of the rankings 

were examined, it was seen that the best ranking was achieved without resampling and the worst 

ranking was achieved when RUS was applied. While the optimization method which gave the 

best result in AUC rankings was ABC, the method that gave the worst result was PSO. 

Table 16: AUC values for radial SVM classifier 

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.6454±0.1174 0.5424±0.1658 0.6282±0.1137 0.6305±0.1238 0.6092±0.1343 0.6226±0.1318 
bupa 0.7124±0.0737 0.6899±0.0824 0.6839±0.081 0.6822±0.0833 0.7022±0.0734 0.6884±0.0779 
cleveland 0.6946±0.1735 0.5804±0.2161 0.6666±0.1737 0.6711±0.168 0.6599±0.1717 0.6379±0.1879 
ecoli 0.8878±0.1397 0.9284±0.0562 0.9062±0.11 0.9088±0.1041 0.8936±0.1273 0.903±0.1093 
haberman 0.6543±0.1122 0.6688±0.1087 0.6884±0.1157 0.6928±0.1084 0.6965±0.1052 0.6904±0.1055 
Sonar 0.6496±0.3671 0.4933±0.2564 0.3483±0.3553 0.4027±0.3668 0.481±0.3894 0.3379±0.34 
glass0 0.8801±0.0767 0.8676±0.0796 0.8641±0.0795 0.8674±0.0809 0.8743±0.0791 0.8716±0.0772 
kyphosis 0.8211±0.1889 0.7748±0.2553 0.8464±0.1699 0.8277±0.1926 0.8426±0.1741 0.7962±0.2171 
newthyroid1 0.9945±0.0127 0.9955±0.0141 0.9956±0.0156 0.9966±0.0114 0.9971±0.012 0.996±0.0123 
Seeds 0.9852±0.0206 0.9828±0.0231 0.9844±0.0214 0.9813±0.0279 0.9838±0.0218 0.9842±0.0227 
Vertebral 0.8843±0.0664 0.8831±0.0585 0.8841±0.0645 0.8894±0.0602 0.8827±0.0646 0.8813±0.063 

 

Table 17: AUC rank means for radial SVM classifier 

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 2.99 4.085 3.57 3.315 3.67 3.37 
bupa 2.495 3.755 3.93 3.9 3.02 3.9 
cleveland 2.685 3.855 3.605 3.485 3.655 3.715 
ecoli 3.155 3.99 3.4 3.345 3.565 3.545 
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haberman 4.295 4.105 3.175 3.215 2.92 3.29 
Sonar 2.645 3.11 3.99 3.85 3.535 3.87 
glass0 2.92 3.64 4.01 3.625 3.165 3.64 
kyphosis 3.41 3.91 3.125 3.505 3.275 3.775 
newthyroid1 3.755 3.51 3.445 3.44 3.39 3.46 
Seeds 3.285 3.675 3.435 3.73 3.505 3.37 
Vertebral 3.085 4.015 3.515 3.135 3.385 3.865 
Mean 3.156  3.786 3.564 3.504 3.371 3.618 

The 𝐹) measurements of the radial SVM classifier are given in Table 18 and the average 

ranks are given in Table 19. In the 11 datasets, the best results were obtained nine times without 

resampling and two times in RUS. When the averages of the rankings were examined, it was seen 

that the best ranking was achieved without resampling and the worst ranking was achieved when 

RUS was applied. While the optimization method which gave the best result in 𝐹) rankings was 

ABC, the method that gave the worst result was DE. 

Table 18: 𝐹* values for radial SVM classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.8194±0.0214 0.5094±0.1433 0.7538±0.127 0.7804±0.0703 0.7335±0.1058 0.7759±0.0791 
bupa 0.753±0.0551 0.7251±0.06 0.5706±0.156 0.5056±0.1405 0.6801±0.1355 0.6579±0.1484 
cleveland 0.9352±0.0138 0.597±0.1404 0.9313±0.0197 0.9314±0.0166 0.9321±0.0157 0.9299±0.0193 
ecoli 0.9552±0.0211 0.9344±0.0313 0.9548±0.0242 0.9529±0.0251 0.9536±0.0228 0.9548±0.0234 
haberman 0.84±0.0313 0.7209±0.0815 0.7989±0.0522 0.7946±0.06 0.7956±0.062 0.7996±0.0599 
Sonar 0±0 0.2256±0.1296 0±0 0±0 0±0 0±0 
glass0 0.865±0.0446 0.8364±0.0753 0.8303±0.0676 0.8327±0.066 0.8588±0.0546 0.835±0.07 
kyphosis 0.8749±0.0802 0.7525±0.1731 0.8602±0.1082 0.858±0.1002 0.8582±0.1009 0.8478±0.0995 
newthyroid1 0.9779±0.0259 0.9202±0.0464 0.9369±0.0461 0.9425±0.041 0.9445±0.0451 0.9426±0.0442 
Seeds 0.8808±0.0942 0.8906±0.0961 0.882±0.091 0.8792±0.0918 0.877±0.0921 0.8854±0.0866 
Vertebral 0.8796±0.0401 0.8493±0.0577 0.8592±0.0498 0.8614±0.0488 0.8748±0.0466 0.8643±0.0479 

 

Table 19: 𝐹* rank means for radial SVM classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 1.97 5.79 3.38 3.03 3.715 3.115 
bupa 1.95 2.86 4.49 5.225 2.98 3.495 
cleveland 2.68 6 3.025 3.145 3.04 3.11 
ecoli 2.915 5.03 3.155 3.455 3.325 3.12 
haberman 1.86 5.44 3.43 3.48 3.46 3.33 
Sonar 3.88 1.6 3.88 3.88 3.88 3.88 
glass0 2.59 3.755 4.14 3.855 2.735 3.925 
kyphosis 2.925 4.71 3.13 3.285 3.305 3.645 
newthyroid1 1.87 4.645 3.775 3.605 3.485 3.62 
Seeds 3.55 3.29 3.49 3.6 3.65 3.42 
Vertebral 2.56   4.425 3.925 3.72 2.815 3.555 
Mean 2.614 4.322 3.62 3.662 3.308 3.474 

The G-mean measurements of the radial SVM classifier are given in Table 20, and the 

average ranks are given in Table 21. The best results were obtained two times without resampling 

and nine times in the RUS. When the rank averages were examined, it was seen that the best 

ranking was achieved when RUS was applied and the worst ranking was achieved when no 
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resampling was applied. While the optimization method which gave the best result in G-mean 

rankings was ABC, the method that gave the worst result was PSO. 

Table 20: G-mean values for radial SVM classifier 

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.1087±0.1739 0.4599±0.1615 0.3307±0.2134 0.3666±0.2347 0.3846±0.2455 0.3167±0.2392 
bupa 0.6257±0.0824 0.6185±0.0792 0.5701±0.1112 0.5489±0.1041 0.6068±0.0874 0.5926±0.1067 
cleveland 0.0049±0.049 0.473±0.2252 0.0627±0.1712 0.0531±0.1613 0.0444±0.1523 0.0317±0.1265 
ecoli 0.549±0.2918 0.7246±0.2439 0.6533±0.2643 0.6579±0.2568 0.6091±0.2776 0.6315±0.2772 
haberman 0.2752±0.2021 0.6192±0.1089 0.5344±0.1509 0.5702±0.1236 0.5697±0.1311 0.5288±0.1673 
Sonar 0±0 0.0294±0.1017 0±0 0±0 0±0 0±0 
glass0 0.7377±0.1137 0.7699±0.1084 0.7463±0.1042 0.7568±0.0974 0.7544±0.111 0.7468±0.1112 
kyphosis 0.3236±0.3847 0.6165±0.3033 0.4577±0.4007 0.4429±0.3898 0.3801±0.3967 0.3884±0.3827 
newthyroid1 0.9718±0.0435 0.924±0.0429 0.9368±0.051 0.9418±0.0456 0.9413±0.0527 0.9424±0.0453 
Seeds 0.9027±0.0779 0.9163±0.0772 0.9066±0.0742 0.9025±0.0757 0.9013±0.0759 0.9072±0.0726 
Vertebral 0.7749±0.0852 0.7962±0.0781 0.7874±0.0743 0.7941±0.0781 0.7844±0.0803 0.7881±0.075 

 

Table 21: G-mean rank means for radial SVM classifier 

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 5.085 2.545 3.555 3.165 3.06 3.59 
bupa 2.82 3.19 3.865 4.345 3.26 3.52 
cleveland 4.095 1.505 3.785 3.8 3.865 3.95 
ecoli 3.85 3.385 3.34 3.46 3.62 3.345 
haberman 5.6 2.36 3.455 3.03 3 3.555 
Sonar 3.54 3.3 3.54 3.54 3.54 3.54 
glass0 3.67 3.125 3.78 3.395 3.36 3.67 
kyphosis 3.86 2.865 3.37 3.51 3.645 3.75 
newthyroid1 2  4.555 3.745 3.585 3.515 3.6 
Seeds 3.585 3.17 3.5 3.62 3.675 3.45 
Vertebral 3.755 3.185 3.57 3.275 3.555 3.66 
Mean 3.805 3.017 3.591 3.52 3.463 3.603 

The AUC measurements of the Naive Bayes classifier are given in Table 22, and the 

average rank in Table 23. In the 11 datasets, the best results were obtained seven times without 

resampling, two times with US with GA, and two times with US with PSO. When the averages 

of the rankings were examined, it was seen that the best ranking was achieved without resampling 

and the worst ranking was reached when RUS was applied. While the optimization method which 

gave the best results in AUC rankings was ABC, the method that gave the worst results was DE. 

Table 22: AUC values for Naive Bayes classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.72±0.0998 0.7156±0.1009 0.7253±0.1017 0.7215±0.098 0.7235±0.0992 0.7239±0.0962 
bupa 0.6041±0.0917 0.5989±0.0938 0.6019±0.0929 0.5898±0.089 0.6032±0.0897 0.6025±0.0889 
cleveland 0.6386±0.1591 0.6314±0.1702 0.631±0.1591 0.6321±0.1621 0.633±0.1553 0.6206±0.1584 
ecoli 0.92±0.0702 0.9104±0.0808 0.9184±0.0719 0.9199±0.0709 0.9188±0.0708 0.9168±0.0714 
haberman 0.6865±0.1091 0.6782±0.1193 0.6816±0.11 0.6796±0.1132 0.6832±0.109 0.6856±0.112 
Sonar 0.8886±0.1289 0.8916±0.112 0.8919±0.1248 0.8891±0.1347 0.8896±0.1241 0.8895±0.1173 
glass0 0.8926±0.0681 0.8664±0.072 0.8698±0.0827 0.8722±0.0656 0.8844±0.0739 0.8635±0.081 
kyphosis 0.7975±0.1888 0.7869±0.1861 0.8001±0.1917 0.777±0.1946 0.8011±0.1902 0.8086±0.1768 
newthyroid1 0.9674±0.0399 0.9483±0.0531 0.9519±0.0476 0.9503±0.0514 0.9561±0.043 0.9575±0.043 
Seeds 0.9646±0.0385 0.9615±0.04 0.9631±0.0396 0.9628±0.0391 0.9637±0.0393 0.9629±0.0385 
Vertebral 0.8397±0.0748 0.8383±0.0772 0.8374±0.0758 0.8406±0.0756 0.8388±0.074 0.8439±0.0725 
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Table 23: AUC rank means for Naive Bayes classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 3.77 4.035 3.05 3.515 3.355 3.275 
bupa 3.295 3.635 3.43 3.72 3.46 3.46 
cleveland 3.03 3.455 3.615 3.385 3.645 3.87 
ecoli 3.285 3.715 3.51 3.3 3.39 3.8 
haberman 3.225 3.62 3.54 3.705 3.525 3.385 
Sonar 3.515 3.635 3.42 3.4 3.52 3.51 
glass0 2.855 3.755 3.675 3.685 3.04 3.99 
kyphosis 3.4 3.68 3.455 3.72 3.395 3.35 
newthyroid1 2.935 3.78 3.685 3.735 3.455 3.41 
Seeds 3.255 3.765 3.505 3.51 3.4 3.565 
Vertebral 3.53 3.695 3.86 3.19 3.675 3.05 
Mean 3.281 3.706 3.522 3.533 3.442 3.515 

The 𝐹) measurements of the Naive Bayes classifier are given in Table 24 and the average 

rank in Table 25. In the 11 datasets, the best results were obtained ten times without resampling 

and one time with US with PSO. When the averages of the rankings were examined, it was seen 

that the best ranking was achieved without resampling and the worst ranking was reached when 

RUS was applied. While the optimization method which gave the best result in 𝐹) rankings gave 

ABC, the method that gave the worst result was DE. 

Table 24: 𝐹* values for Naive Bayes classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.8257±0.0372 0.7982±0.0712 0.8211±0.0564 0.8185±0.059 0.8212±0.0545 0.821±0.0512 
bupa 0.6746±0.0753 0.604±0.1004 0.526±0.1055 0.5153±0.0964 0.6229±0.1117 0.5537±0.1141 
cleveland 0.9266±0.0302 0.7282±0.0763 0.8877±0.0415 0.8864±0.0406 0.8858±0.0422 0.891±0.0399 
ecoli 0.937±0.0355 0.9009±0.0467 0.9284±0.0374 0.924±0.0405 0.9299±0.0382 0.9291±0.0386 
haberman 0.8311±0.0406 0.771±0.0647 0.7981±0.0563 0.802±0.0546 0.7977±0.0563 0.7991±0.0495 
Sonar 0.6375±0.2684 0.5887±0.197 0.6117±0.2594 0.6477±0.2398 0.6293±0.2589 0.6513±0.2555 
glass0 0.8051±0.0834 0.7306±0.1047 0.7286±0.1121 0.7378±0.0969 0.7728±0.1121 0.73±0.101 
kyphosis 0.8899±0.0626 0.8093±0.1145 0.872±0.0905 0.8549±0.0906 0.8725±0.0967 0.8618±0.09 
newthyroid1 0.9695±0.0321 0.9493±0.0402 0.9573±0.0337 0.9555±0.0339 0.9602±0.0309 0.9594±0.029 
Seeds 0.8549±0.0914 0.8424±0.0987 0.8502±0.0896 0.8469±0.0895 0.8482±0.0892 0.8506±0.0925 
Vertebral 0.8143±0.0649 0.7939±0.0698 0.7983±0.0664 0.7998±0.0697 0.8079±0.0679 0.8043±0.0648 

 

Table 25: 𝐹* rank means for Naive Bayes classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 3.295 4.235 3.33 3.375 3.385 3.38 
bupa 1.645 3.185 4.575 4.67 2.775 4.15 
cleveland 1.375 5.95 3.4 3.525 3.52 3.23 
ecoli 2.255 5.41 3.25 3.715 3.165 3.205 
haberman 1.9 4.765 3.685 3.495 3.65 3.505 
Sonar 3.2 4.265 3.65 3.19 3.47 3.225 
glass0 2.225 3.945 4.095 3.89 2.87 3.975 
kyphosis 2.73 4.715 3.255 3.625 3.19 3.485 
newthyroid1 2.72 4.045 3.575 3.76 3.455 3.445 
Seeds 3.255 3.77 3.455 3.57 3.565 3.385 
Vertebral 2.79 3.965 3.84 3.755 3.215 3.435 
Mean 2.49 4.386 3.646 3.688 3.296 3.493 
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G-mean measurements of the Naive Bayes classifier are given in Table 26 and average 

ranks are given in Table 27. In the 11 datasets, the best results were obtained four times without 

resampling and seven times in the RUS. In terms of rank averages, the best ranking was achieved 

by RUS, and the worst by US with GA. While the optimization method which gave the best result 

in G-mean rankings was ABC, the method that gave the worst result was the GA.   

Table 26: G-mean values for Naive Bayes classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.3682±0.2003 0.6469±0.1213 0.5802±0.1327 0.6015±0.1294 0.5918±0.1413 0.591±0.1232 
bupa 0.5828±0.0885 0.5844±0.0925 0.5455±0.0842 0.5413±0.0799 0.5708±0.0908 0.5572±0.0867 
cleveland 0.2689±0.294 0.5469±0.207 0.3662±0.2895 0.3865±0.2796 0.3542±0.2772 0.3022±0.295 
ecoli 0.7919±0.1345 0.8374±0.1012 0.8026±0.1306 0.8015±0.137 0.799±0.1292 0.8018±0.1356 
haberman 0.467±0.1733 0.5992±0.1322 0.5502±0.14 0.5735±0.1484 0.5827±0.1287 0.569±0.1374 
Sonar 0.7262±0.26 0.7672±0.1661 0.7163±0.266 0.7496±0.2347 0.7246±0.2469 0.7499±0.2397 
glass0 0.7849±0.0842 0.7363±0.0886 0.733±0.0974 0.7414±0.0842 0.7652±0.1006 0.7314±0.0952 
kyphosis 0.3715±0.3912 0.6034±0.3323 0.4756±0.3999 0.4635±0.3887 0.4601±0.4029 0.44±0.4073 
newthyroid1 0.9632±0.0462 0.9512±0.0378 0.9586±0.0319 0.9569±0.0319 0.9587±0.0341 0.959±0.0312 
Seeds 0.8903±0.0719 0.8838±0.0771 0.8895±0.0691 0.8871±0.0707 0.8866±0.0691 0.8877±0.0726 
Vertebral 0.7768±0.0757 0.77±0.0711 0.77±0.0733 0.7728±0.0747 0.7738±0.0762 0.7733±0.0722 

 

Table 27: G-mean rank means for Naive Bayes classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 5.435 2.48 3.41 3.205 3.245 3.225 
bupa 2.865 2.955 4.025 4.03 3.485 3.64 
cleveland 3.615 2.29 3.69 3.565 3.835 4.005 
ecoli 2.915 3.97 3.49 3.745 3.375 3.505 
haberman 4.94 2.8 3.625 3.155 3.155 3.325 
Sonar 3.245 4.065 3.66 3.235 3.53 3.265 
glass0 2.535 3.74 3.99 3.78 2.97 3.985 
kyphosis 3.69 3.195 3.43 3.55 3.51 3.625 
newthyroid1 2.81 3.995 3.525 3.74 3.485 3.445 
Seeds 3.255 3.77 3.455 3.57 3.565 3.385 
Vertebral 3.14 3.795 3.69 3.645 3.325 3.405 
Mean 3.495 3.369 3.635 3.565 3.407 3.528 

The AUC measurements of the Logistic Regression classifier are given in Table 28, and 

the average rank in Table 29. In the 11 datasets, the best results were obtained five times without 

resampling, one time in US with ABC and five times in US with PSO. When the averages of the 

rankings were examined, it was seen that the best ranking was achieved without resampling and 

the worst ranking was achieved when RUS was applied. While the optimization method which 

was the best results in AUC rankings was ABC, the method that gave the worst results was DE. 

Table 28: AUC values for logistic regression classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.7215±0.1073 0.7128±0.105 0.7224±0.1056 0.7252±0.1096 0.7202±0.1072 0.7225±0.1064 
bupa 0.7107±0.0884 0.7092±0.0903 0.7042±0.0886 0.7036±0.0896 0.7077±0.0887 0.7047±0.0884 
cleveland 0.7403±0.1578 0.7225±0.1555 0.7328±0.1556 0.7363±0.155 0.7377±0.1597 0.7359±0.1527 
ecoli 0.9067±0.0708 0.8986±0.0737 0.9048±0.0732 0.9038±0.0723 0.9056±0.0719 0.9036±0.0718 
haberman 0.6807±0.1273 0.6784±0.1221 0.6807±0.1348 0.6806±0.1225 0.6792±0.1232 0.6814±0.1272 
Sonar 0.7314±0.1561 0.5458±0.212 0.6897±0.1929 0.5949±0.1948 0.6628±0.1994 0.6175±0.1964 
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glass0 0.8216±0.0858 0.8114±0.086 0.8134±0.0861 0.8106±0.0866 0.8225±0.083 0.8156±0.0865 
kyphosis 0.8357±0.1641 0.8168±0.1701 0.8361±0.1628 0.8296±0.1722 0.8357±0.1632 0.8395±0.1625 
newthyroid1 0.9778±0.054 0.9878±0.0442 0.9864±0.0513 0.985±0.0422 0.9861±0.0365 0.9932±0.0316 
Seeds 0.9888±0.0336 0.9719±0.0486 0.9698±0.0526 0.9752±0.0503 0.9826±0.0379 0.9833±0.0363 
Vertebral 0.9312±0.0425 0.9305±0.0402 0.9302±0.0442 0.932±0.0433 0.9299±0.0445 0.9319±0.0421 

 

Table 29: AUC rank means for logistic regression classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 3.485 4 3.405 3.295 3.45 3.365 
bupa 3.14 3.38 3.62 3.795 3.5 3.565 
cleveland 3.115 3.895 3.8 3.4 3.31 3.48 
ecoli 3.195 3.785 3.485 3.575 3.42 3.54 
haberman 3.455 3.685 3.285 3.475 3.555 3.545 
Sonar 2.655 4.27 3.13 3.985 3.31 3.65 
glass0 3.195 3.55 3.695 3.77 3.13 3.66 
kyphosis 3.31  3.85 3.455 3.58 3.52 3.285 
newthyroid1 3.68 3.51 3.355 3.61 3.57 3.275 
Seeds 2.995 3.875 3.79 3.57 3.29 3.48 
Vertebral 3.47 3.595 3.48 3.335 3.71 3.41 
Mean 3.245 3.763 3.5 3.581 3.433 3.478 

The 𝐹) measures of the Logistic Regression classifier are given in Table 30, and the average 

rank in Table 31. In the 11 datasets, the best results were obtained ten times without resampling 

and one time with US with PSO. When the averages of the rankings were examined, it was seen 

that the best ranking was achieved without resampling and the worst ranking was reached when 

RUS was applied. While the optimization method which gave the best result in 𝐹) rankings was 

ABC, the method that gave the worst result was DE. 

Table 30: 𝐹* values for Logistic Regression classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 0.8355±0.0474 0.7303±0.0773 0.785±0.0733 0.786±0.0807 0.7734±0.0833 0.781±0.0824 
bupa 0.7337±0.0657 0.6787±0.08 0.584±0.0908 0.5675±0.1012 0.6892±0.1035 0.6255±0.0915 
cleveland 0.9412±0.0142 0.7924±0.0638 0.9264±0.0317 0.9274±0.03 0.9252±0.0302 0.929±0.0262 
ecoli 0.9573±0.0191 0.8928±0.0526 0.9534±0.0216 0.953±0.0223 0.9569±0.0202 0.9532±0.0213 
haberman 0.8449±0.0253 0.7911±0.073 0.8417±0.0433 0.8364±0.055 0.8376±0.0458 0.842±0.0457 
Sonar 0.4384±0.243 0.326±0.184 0.411±0.2199 0.3397±0.1981 0.4052±0.2274 0.3542±0.2112 
glass0 0.8265±0.0646 0.7616±0.076 0.7734±0.0761 0.7651±0.0804 0.807±0.064 0.7778±0.0803 
kyphosis 0.8743±0.0901 0.7844±0.1455 0.8561±0.1082 0.8579±0.1093 0.8626±0.1112 0.8551±0.1101 
newthyroid1 0.9856±0.0221 0.9812±0.0283 0.986±0.023 0.9859±0.0227 0.9856±0.0211 0.9884±0.0198 
Seeds 0.9341±0.0779 0.9274±0.0798 0.9253±0.0742 0.9236±0.0779 0.9263±0.0778 0.9199±0.0792 
Vertebral 0.888±0.0464 0.8697±0.0531 0.872±0.0589 0.8704±0.0548 0.8834±0.0467 0.8773±0.0545 

 

Table 31: 𝐹* rank means for Logistic Regression classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 1.735 5.15 3.375 3.325 3.79 3.625 
bupa 1.75 2.755 4.92 5.09 2.62 3.865 
cleveland 2.07 6 3.235 3.155 3.35 3.19 
ecoli 2.64 5.705 3.235 3.28 2.765 3.375 
haberman 3.09 5.07 2.99 3.34 3.455 3.055 
Sonar 2.82 3.99 3.375 3.875 3.22 3.72 
glass0 2.165 4.24 3.81 4.105 2.785 3.895 
kyphosis 2.995 4.695 3.365 3.335 3.24 3.37 
newthyroid1 3.51 3.745 3.475 3.445 3.545 3.28 
Seeds 3.245 3.46 3.49 3.565 3.46 3.78 
Vertebral 2.65 3.965 3.815 4.04 3.085 3.445 
Mean 2.606 4.434 3.553 3.687 3.21 3.509 
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The G-mean measurements of the Logistic Regression classifier are given in Table 32, and 

the average of the rankings are given in Table 33. In the 11 datasets, the best results were obtained 

two times without resampling, seven times in RUS, one time in US with DE, and one time in US 

with PSO. When the rank averages are examined, it was seen that the best ranking was achieved 

when RUS was applied and the worst ranking was reached when no resampling was applied. 

While the optimization method which gave the best result in G-mean rankings was ABC, the 

method that gave the worst result was PSO. 

Table 32: G-mean values for Logistic Regression classifier  
Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 

breast 0.5676±0.1264 0.6443±0.0986 0.6534±0.1153 0.6659±0.1156 0.6579±0.1107 0.6533±0.1217 

bupa 0.6277±0.0944 0.6512±0.0817 0.6028±0.0728 0.5917±0.0789 0.6219±0.0877 0.6188±0.0776 

cleveland 0.1495±0.2492 0.6424±0.1875 0.3951±0.3086 0.3728±0.3211 0.3499±0.313 0.3277±0.3099 

ecoli 0.6304±0.2396 0.8087±0.1089 0.6991±0.2258 0.7334±0.1961 0.6913±0.2328 0.7038±0.2171 

haberman 0.3366±0.1824 0.6211±0.1288 0.5238±0.1594 0.5384±0.1656 0.528±0.1766 0.5237±0.1607 

Sonar 0.5984±0.2861 0.5068±0.242 0.5932±0.2585 0.5143±0.2604 0.5719±0.2703 0.5313±0.2745 

glass0 0.6978±0.1216 0.7263±0.086 0.7201±0.1008 0.7238±0.0948 0.7111±0.0915 0.7196±0.1032 

kyphosis 0.4359±0.3947 0.6308±0.3119 0.4907±0.3897 0.5615±0.3737 0.5065±0.3945 0.5442±0.3718 

newthyroid1 0.9531±0.0893 0.9611±0.0886 0.9575±0.0909 0.9633±0.0836 0.9661±0.0616 0.9714±0.0575 

Seeds 0.9503±0.0619 0.9477±0.061 0.9452±0.059 0.9436±0.0611 0.9461±0.0601 0.9413±0.0612 

Vertebral 0.8248±0.0714 0.8393±0.0655 0.8318±0.0734 0.8336±0.0697 0.8287±0.0682 0.8317±0.0748 

 

Table 33: G-mean rank means for Logistic Regression classifier  

Dataset No resampling RUS US with GA US with DE US with ABC US with PSO 
breast 4.925 3.59 3.14 2.89 3.215 3.24 
bupa 3.325 2.42 4.045 4.315 3.51 3.385 
cleveland 4.6 1.94 3.39 3.42 3.805 3.845 
ecoli 3.855 2.935 3.69 3.4 3.43 3.69 
haberman 5.275 1.94 3.47 3.33 3.395 3.59 
Sonar 2.895 3.995 3.315 3.835 3.29 3.67 
glass0 3.8 3.255 3.4 3.435 3.615 3.495 
kyphosis 3.595 3.445 3.705 3.375 3.45 3.43 
newthyroid1 3.52 3.765 3.465 3.435 3.535 3.28 
Seeds 3.245 3.46 3.49 3.565 3.46 3.78 
Vertebral 3.73 3.36 3.525 3.435 3.535 3.415 
Mean 3.888 3.1 3.512 3.494 3.476 3.529 

4. Results and Discussion 

The rank means for all cases is given in Table 34. Kruskal Wallis H test was used to test 

whether the difference between the rank means found for all cases was statistically significant. 

Since there was a significant difference between all cases, Dunn test was performed for pairwise 

comparisons. Significance levels of all these statistical tests are given in Table 35. The following 

inferences were made on the basis of these results: 
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• For AUC, 𝐹) and G-mean, there is a significant difference between the rank averages 

according to resampling status.  

• For AUC, 𝐹) and G-mean, there is no significant difference between the no resampling 

and RUS rank averages. 

• For AUC, 𝐹) and G-mean, there is a significant difference between the no resampling 

and GA rank averages. 

• For AUC, 𝐹) and G-mean, there is a significant difference between the RUS and GA 

rank averages. 

• For AUC, 𝐹) and G-mean, there is a significant difference between the no resampling 

and DE rank averages. 

• For AUC, 𝐹) and G-mean, there is a significant difference between the RUS and DE 

rank averages. 

• For AUC, there is no significant difference between the GA and DE rank averages. For 

𝐹), there is a significant difference between the GA and DE rank averages. For G-mean, there is 

no significant difference between the GA and DE rank averages. 

• For AUC, 𝐹) and G-mean, there is a significant difference between the no resampling 

and ABC rank averages. 

• For AUC, 𝐹)and G-mean, there is a significant difference between the RUS and ABC 

rank averages.  

• For AUC,	𝐹) and G-mean, there is a significant difference between the GA and ABC 

rank averages. 

• For AUC and 𝐹) there is a significant difference between the DE and ABC rank 

averages. There is no significant difference between the DE and ABC rank averages for G-mean. 

• For AUC, 𝐹) and G-mean, there is a significant difference between the no resampling 

and PSO rank averages. 

• For AUC, 𝐹) and G-mean, there is a significant difference between RUS and PSO rank 

averages. 

• For AUC and G-mean, there is a significant difference between GA and PSO rank 

averages. For 𝐹), there is no significant difference between GA and PSO rank averages. 

• For AUC, there is no significant difference between the DE and PSO rank averages. For 

𝐹) and G-mean, there is a significant difference between the DE and PSO rank averages. 

• For AUC, 𝐹) and G-mean, there is a significant difference between the ABC and PSO 

rank averages. 
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Table 34: Rank means for all cases 

Criterion  No resampling RUS US with GA US with DE US with ABC US with PSO 
AUC 3.290 3.684 3.519 3.523 3.422 3.560 
𝐹' 2.563 4.453 3.579 3.643 3.278 3.485 
G-mean 3.747 3.194 3.524 3.505 3.467 3.563 

 

Table 35: Kruskal-Wallis H test and pairwise comparisons for the mean of all cases 

Test 𝑝()* 𝑝+! 𝑝,-%.$ 
Kruskall-Wallis H Test <0.001* <0.001* <0.001* 

Dunn Test 
 

1 - 2 <0.001* <0.001* <0.001* 
1 - 3 <0.001* <0.001* <0.001* 
2 - 3 <0.001* <0.001* <0.001* 
1 - 4 <0.001* <0.001* <0.001* 
2 - 4 <0.001* <0.001* <0.001* 
3 - 4 0.439 0.012 0.252 
1 - 5 <0.001* <0.001* <0.001* 
2 - 5 <0.001* <0.001* <0.001* 
3 - 5 <0.001* <0.001* 0.019 
4 - 5 <0.001* <0.001* 0.079 
1 - 6 <0.001* <0.001* <0.001* 
2 - 6 <0.001* <0.001* <0.001* 
3 - 6 0.070 0.001 0.100 
4 - 6 0.092 <0.001* 0.026 
5 - 6 <0.001* <0.001* <0.001* 

5. Conclusion 

The problem with class imbalance is that the dependent variable contains different class 

observation numbers. This situation affects most classification methods. Resampling methods are 

the most common methods for solving the class imbalance problem. One of the resampling 

methods is undersampling method. The aim of the undersampling method is to achieve balance 

by extracting certain observations within the positive class. It is very important to correctly select 

these observations, as discarding observations causes information loss. 

In this study, optimization methods were used in the selection of observations to be 

extracted in undersampling. The optimization methods used are GA, DE, ABC and PSO. 

According to the general rank means of these methods, the best optimization method was found 

to be ABC. The difference between the ABC method and other methods was found to be 

significant as a result of the Kruskal Wallis H and Dunn tests. 

Four optimization methods were used in this study. Since these optimization methods were 

used in the default settings, they are open to investigating how effective they are at different 

settings. In addition, it is possible to use different classifiers and different performance criteria in 

the objective function. 
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