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One of the key concepts in finance is Markowitz’s constrained mean-

variance model, the number of assets to be included in the portfolio is 

restricted. The solution of this generalized problem, which belongs to 

the quadratic and integer programming problem class, as the number of 

dimensions increases, is difficult to obtain with standard methods. In 

this study, the simulated annealing (SA) algorithm, which is one of the 

local search-based meta-heuristic methods, was preferred.  The 

developed SA algorithm was applied to the Hang-Seng benchmark data 

set, and the results were compared with pioneering studies. According 

to the experimental results, upon the performance of the algorithm was 

found to be sufficient, the SA algorithm was applied for the Borsa 

Istanbul 30 index. The results of the experiments based on the 

Markowitz mean-variance model demonstrate that, while more assets 

must be maintained at lower risk levels to converge an unconstrained 

efficient frontier and the number of assets needed to do so decreases as 

risk rises 
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Finans alanının önemli konularından Markowitz’in kısıtlı ortalama-

varyans modelinde, portföye dahil edilecek varlık sayısı sınırlandırılır. 

Kuadratik ve tamsayılı programlama problem sınıfına ait genelleştirilmiş 

bu problemin, boyut sayısının artmasıyla çözümünün standart 

yöntemlerle elde edilmesi zordur. Bu çalışmada yerel arama tabanlı 
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Anahtar Kelimeler: 
Portföy 

optimizasyonu, 

markowitz ortalama-

varyans modeli, 

tavlama benzetim, 

sezgisel optimizasyon. 

meta-sezgisel yöntemlerden olan tavlama benzetim (TB) algoritması 

tercih edilmiş, geliştirilen TB algoritması Hang-Seng benchmark veri 

setine uygulanmış, sonuçlar öncü çalışmalarla kıyaslanmıştır. 

Markowitz kısıtlı ortalama-varyans modeline dayanarak elde edilen 

kısıtsız etkin sınıra yaklaşabilmek için, düşük risk düzeyinde varlık 

sayısının daha fazla, yüksek risk seviyesinde varlık sayısının daha az 

olması gerektiği sonucuna ulaşılmıştır. 

1. Introduction 

The aim of national economies is to provide sustainable economic growth. In order to achieve this 

goal, the Neo-Classical School argues that savings should turn into investments. In the dominant 

paradigm, there is the phenomenon of attracting the savings of both individuals and institutional 

structures to the market through the financial system and converting them into investments and 

increasing production. Businesses, which are an element of economic development, can either provide 

the funds they need to produce through loans or through share markets by going public. However, 

investors have certain earning expectations that take into account the inherent risks in the share market, 

wishing to maximize the future values of their individual wealth while trading in the share markets. The 

stock market, which is one of the most important markets used by investors, is a market that should be 

treated cautiously due to its variable structure. Market risk is one of the systematic risks that should be 

analyzed before making an investment decision (Jadhav and Ramanathan, 2018). Traditional Portfolio 

Theory claims that investors could maximize their expected return by investing in multiple securities 

rather than investing in a single asset in order to increase their wealth. The emphasis on “multiple assets” 

in this claim refers to the word portfolio. According to the financial terms dictionary, portfolio refers to 

“the sum of assets owned”. However, in time, it has been observed that the increase in the number of 

assets in the portfolio does not prevent loss of earnings. Markowitz’s mean-variance model, which forms 

the basis of modern finance theory, argues that the risk can be reduced at the expected return level by 

considering the relationship between the returns of different financial assets, not the number of assets in 

the portfolio, and the assets, that do not have a positive relationship between them, being in the same 

portfolio. Due to the fact that investor actions will influence the portfolios they choose, the theory is a 

cornerstone of contemporary finance theory and among the most significant theories in asset allocation, 

investment, and behavioral finance (Wong, 2020). However, the standard mean-variance model does 

not include any cardinality and importance level assumptions in portfolio investments. According to 

Markowitz’s assumption, asset returns follow a multivariate normal distribution. Accordingly, the return 

of a portfolio can be completely defined by expected return and variance. The normal distribution 

assumption gives rise to some problems in the mean variance model. Compared to the distribution 

associated with normality, the asset return distribution typically exhibits a higher probability of outliers 

(Chang, Meade, Beasley and Sharaiha, 2000). In other words, the distribution of asset returns is 

leptokurtic. 

Markowitz mean-variance model does not contain any conditions related to the number of asset 

constraints while creating a portfolio, which can be considered as another weakness. The increase in the 

number and conditions of today’s financial assets has led to the necessity of adding a restriction on the 

number of assets to the model. Considering the abundance of investment options in financial markets, 

the rapid functioning of the markets and their complex structure, it is clear that new methods will be 

needed to create an optimal portfolio. In other words, risk–return dynamics continuously change with 

time in modern markets (Meghwani and Thakur, 2018). Integer constraints that limit a portfolio to a 

certain number of assets or impose limits on the proportion of the portfolio held in a particular asset 

cannot be easily applied. It has been shown by Shaw, Liu and Kopman (2008) that the constrained model 

is included in the NP-Hard problem class. For this reason, the researchers proposed heuristic search 

methods for this difficult problem type. 
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Heuristic approach was first developed by Speranza (1996). To solve the portfolio optimization 

problem, Schaerf (2002) developed local search heuristics, but it was realized that these intuitions were 

stuck to local optimums. Therefore, metaheuristic methods, which make broader searches than heuristic 

methods, have started to be preferred. The best-known  metaheuristic methods are genetic algorithms, 

particle swarm optimization, simulated annealing technique and tabu search technique. Genetic 

algorithm technique, which is the most preferred method among metaheuristic methods, was first used 

by Shoaf and Foster (1998) for the solution of portfolio optimization.  

Chang et al. (2000), compared the Hang Seng, DAX100, FTSE 100, S&P 100 and Nikkei 225 data 

with genetic algorithm, simulated annealing and tabu search techniques for portfolio optimization 

solution for March 1992 and September 1997 period (Chang et al., 2000). As a result, they found that 

each algorithm showed different advantages over different data sets, and they showed that all these 

algorithms can be applied for efficient portfolio selection. These techniques have also been used by 

Moral-Escudero, Ruiz-Torrubiano and Suarez (2006), Chang, Yang and Chang (2009), Özdemir (2011), 

Eshlaghy, Abdolahi, Moghadasi and Maatofi (2011), Gorgulho, Neves and Horta (2011), Chen, Mabu, 

and Hirasawa (2011), Woodside-Oriakhi, Lucas, and Beasley (2011), Bermúdez, Segura and Vercher 

(2012), Pandari, Azar and Shavazi (2012), Ackora-Prah, Gyamerah, Andam and Gyamfi (2014), Hsu 

(2014), Yakut and Çankal (2016), Zeren and Bayğın (2015), Chen, Lin, Zeng, Xu, and Zhang  (2017), 

Jalota and Thakur (2018), Sasaki, Laamrani, Yamashiro, Alehegn and Kamoyedji (2018), Garcia, 

Guijarro and Oliver (2018), Vasiani, Handari and Hertono (2020). 

This field has attracted a lot of attention due to its practical benefits and its literature is quite 

extensive. For comprehensive and recent studies examining the proposed deterministic models for 

mean-variance portfolio optimization and various variants of this model, as well as additional real-life 

constraints, the researchers can draw upon the comprehensive survey of Metaxiotis and Liagkouras 

(2012), Kalaycı, Ertenlice, Akyer and Aygören (2017a), Kalaycı, Ertenlice, Akyer and Aygören (2017b) 

and Kalaycı, Ertenlice, Akbay (2019). 

Particle swarm optimization was first used by Cura (2009) for portfolio optimization solution. Cura 

(2009) compared the particle swarm optimization, genetic algorithms, simulated annealing and tabu 

search techniques for March 1992 and September 1997 with data from Hang Seng, DAX100, FTSE 100, 

S&P 100, and Nikkei, and as a result, it has been discovered that no technique performed better than 

another and particle swarm optimization works better in a portfolio with low-risk investments. This 

technique is also used by Zhu and Wang (2011), Sun, Fang, Wu, Lai and Xu (2011), Golmakani and 

Fazel (2011), Deng, Lin, and Lo (2012), Corazza, Fasano and Gusso (2013), Cesarone, Scozzari, and 

Tardella (2013), Kamali (2014), Wang, Chen, Zhang and Lin (2015), Çelenli, Eğrioğlu and Çorba 

(2015), Yin, Ni and Zhai (2015), Ni, Yin, Tian and Zhai (2017), Abuelfadl (2017) and Akyer, Kalaycı 

and Aygören (2018).  

Fernandez and Gomez (2007), Hang Seng, DAX100, FTSE 100, S&P 100 and Nikkei 225 data, 

used artificial neural networks, genetic algorithm, tabu search and simulated annealing methods in 

portfolio optimization solution for March 1992 and September 1997 period and they concluded that the 

artificial neural network, which is one of the techniques used for portfolio optimization solution, gives 

better results in low-risk investments. Coutino-Gomez, Torres-Jimenez and Villarreal-Antelo (2003) 

compared the genetic algorithm, greedy algorithm, simulated annealing methods in portfolio 

optimization and found that the simulated annealing method gives better results in low risk. Simulated 

annealing method was also used by Crama and Schyns (2003), Maringer and Kellerer (2003), Woodside-

Oriakhi, et al. (2011). There are many other studies on simulated annealing in literature. Some of these 

studies are Fastrich and Winker (2012), Sen, Saha, Ekbal and Laha (2014), Qodsi, Tehrani and Bashiri 

(2015), Lukovac, Pamucar, Popovic and Dorovic (2017), Kumar, Doja and Baig (2018), Moradi, 

Kayvanfar and Rafiee (2021). 

When the literature is examined, solving the resource-constrained portfolio optimization problem 

with meta-heuristic algorithms has attracted the attention of many researchers since the study of Chang 

et al. (2000). Most of these studies have been on comparing the performance of different meta-heuristic 

methods. When the current literature is examined, there is no meta-heuristic method that has a great 

advantage in all of the frequently used test data sets. For this reason, this study aims to obtain a good 
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solution on the test data set and to show a real-time application with up-to-date data, rather than 

comparing the methods. 

In this study, Simulated Annealing algorithm is proposed to obtain optimal/near-optimal solutions 

to our research problem. SA algorithm is a powerful method for solving many optimization problems 

and its flexibility and ability to approach global optimality is higher than other local search methods 

(Delahaye, Chaimatanan,and Mongeau, 2018). Considering the uncertainty and fluctuations in Turkey’s 

financial market, the ability of the SA algorithm to produce solutions in a wide range of areas can make 

a significant contribution. On the other hand, the simulated annealing algorithm has flexible parameter 

settings and requires less CPU time than evolutionary algorithms (Crama, 2003).  

Considering these advantages in practice, the SA algorithm is preferred for this study. Firstly, the 

algorithm developed in the study was tested on the Hang-Seng benchmark data set, and its result was 

compared with Cura (2009), Mozafari, Jolai and Tafazzoli (2011), Sadigh,  Mokhtari, Iran poor and 

Fatemi-Ghomi (2012), Baykasoğlu, Yunusoglu and Özsoydan (2015), Kalaycı et al. (2017b), Kalaycı, 

Polat and Akbay (2020), which are pioneering and very competitive results in the literature. Once the 

performance of the algorithm was found sufficient, an application on the BIST -30 index in a real-time 

environment was demonstrated using the existing parameters. The current outcomes of the study will 

contribute to the portfolio optimization literature and market practitioners. 

The theoretical foundations of the Markowitz mean-variance model will be briefly explained in the 

continuing section of this study. In the third section, simulated annealing algorithm will be presented 

and a special application of SA for portfolio optimization will be applied for both Hang-Seng and Borsa 

Istanbul 30 (BIST30) index average 100-day return data set. In the fourth section, application results 

will be discussed. 

2. Markowitz mean-variance model 

According to Markowitz (1952), portfolio creation is a process that starts with observation and 

experience, ends with expectations about the future performance of existing securities, and a second 

phase that starts with expectations about the performance of future securities and ends with portfolio 

selection. Markowitz mean-variance model deals with the second stage. In this context, the Markowitz 

mean-variance model assumptions can be listed as follows (Markowitz, 1952): 

 Rational investors prefer assets with the highest expected return and lowest risk when choosing 

their portfolio assets, 

 Mean return and variances of assets are measured while considering risk and expected return, 

 The rational investor prefers the asset with the highest expected return at the same risk level and 

the asset with the lowest risk at the same expected return level, 

 The aim of the rational investor is to maximize the expected return and minimize the risk. 

In the quantitative framework that Markowitz created for portfolio selection, the return of the 

portfolio can be fully defined by the expected return and variance (risk).  

A set of asset portfolios that offer the minimum risk for a given level of return from the efficient 

frontier, and portfolios at the efficient frontier can be found by quadratic programming (QP). To be more 

precise; Markowitz proposes the mean-variance model, which is accepted as a quadratic programming 

problem in portfolio optimization (Adıgüzel-Mercangöz, 2019).  

The parameters of the Markowitz mean-variance model are expressed as follows: 

N: number of assets 

μi: expected return of the asset “i” (i= 1, …. N) 

σij: covariance value between i and j assets (i =1,…N; j=1,….N) 

R*: expected return of the portfolio 

Decision variable wi: the weight of asset i in the portfolio (0 ≤ wi ≤ 1) being; 
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The mathematical expression / objective function of the Markowitz mean variance model is given 

in Equation (1) - (4). 

 
1 1

N N

i j ij

i j

min w w 
 

  (1) 

 *

1

N

i i

i

w R


  (2) 

 
1

1
N

i

i

w


  (3) 

0 ≤ 1, 1,2,3,....iw i N   (4) 

Equation 1 expresses that the risk of the portfolio is minimized, equation 2 indicates the expected 

return of the portfolio, and equation 3 expresses that the sum of the weights of the assets in the portfolio 

must be equal to 1. Equation (1)-(4) is a quadratic programming problem and an unconstrained model. 

In the efficient frontier plot, a continuous increasing curve can be obtained according to different values 

of the expected value (R *). As Chang et al. (2000) pointed out, the objective function, with the 

weighting parameter λ (0 < λ <1) in the efficient frontier drawing without constraints, can be rewritten 

as follows: 

 
1 1 1
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When the λ parameter is 0, the expected return is maximum, and when the λ parameter is 1, the risk 

is minimum. Parameters in the cardinality constrained model of Chang et al (2000): 

K: the desired number of assets in the portfolio 

εi: minimum weight of asset i in portfolio 

δi: maximum weight of asset i in portfolio 

It should be 0 ≤ εi ≤ δi ≤ 1 here.  

And decision variable: 
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Hence, the objective function in the cardinality constrained model is given in equation (6)-(11). 
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Due to the addition of the constraint that guarantees the number of assets to be included in the 

portfolio to be a certain K number and the increase in the dimensions of the redefined asset-constrained 

portfolio optimization problem, it has become difficult to obtain the exact solution with mathematical 

programming-based solution processes.  

3. The heuristic approach to the constricted efficient frontier 

In this section, firstly, the heuristic approach designed to find a restricted efficient frontier will be 

presented, then the basic principles of the proposed simulated annealing algorithm for the optimization 

problem discussed will be briefly explained and a special application will be shown. 

3.1. Simulated annealing algorithm 

The simulated annealing (SA) algorithm is a trajectory-based heuristic search method that performs 

stochastic neighborhood search independently of each other, proposed by Kirkpatrick, Gelatt and Vecchi 

(1983), Cerny (1985). The biggest advantage of SA, which provides good solutions for combinatorial 

optimization problems, compared to traditional local search methods, is that it does not get stuck at the 

local optimum while searching for a global optimum. SA’s development was inspired by the physical 

annealing process of solids in physics. The annealing process consists of two steps. First, by increasing 

the temperature of the heat bath to the highest value a metal can melt, the atoms gain the necessary 

energy and have the freedom to move. In the next step, the appropriate crystal structure is obtained by 

cooling and freezing (annealing) the metal in a controlled manner until it enters a low energy state. 

In the SA algorithm, the neighbor of the randomly selected initial solution is generated with a 

suitable mechanism of action. If the new solution creates an improvement in objective function, it is 

considered the current solution. This process continues until a better solution cannot be found among 

the neighbors of the current solution. This process is the descent algorithm and ends with a local best 

solution. However, there is an important step that characterizes the SA algorithm and removes this 

disadvantage of the descent algorithm. In SA, bad solutions are also allowed to be accepted in a 

controlled manner. In this way, it is ensured that it avoids local optimum. This action should be 

determined at random within a plan. The probability of acceptance of a move that causes a deterioration 

of the objective function  is calculated by the acceptance function. Metropolis, Rosenbluth, Rosenbluth, 

Teller and Teller (1953) suggested using the Boltzmann-Gibbs distribution as a probability function to 

make this decision. This acceptance function, inspired by thermodynamic models, is given in  

Equation 12. 

P(acceptance)= e(-∆/T) (12) 

Here, T is a control parameter corresponding to the temperature at the physical annealing and is the 

difference between the current solution and the neighboring solution. A fixed number of neighboring 

solutions are sought at each temperature value. After each stage, the temperature is reduced by a constant 

factor α ∈ (0.1). SA algorithms differ from each other according to various factors such as neighborhood 

search, cooling (annealing) schedule and termination criteria. 

3.2. Simulated annealing for constrained portfolio optimization 

Simulated annealing algorithm adapted for constrained portfolio model follows a common 

procedure with other heuristic optimization techniques. The problem is started with a random solution 

point coded as 0-1 and neighboring solutions of the current solution that can be reached with a single 

action are produced by operating the neighboring structures unique to the simulated annealing. The 

initial temperature value was generated from the initial solution value as in the study of Chang et al. 

(2000), and at each temperature, four times the total number of assets in the portfolio, neighboring 

solutions were sought. Chang et al (2000) determined the initial temperature value as the initial solution 

value / 10. Experiments were carried out with 80, 85, 90 and 95 values for the α parameter used for the 

cooling plan and 2 * N, 3 * N and 4 * N values for the number of neighbors. The best result was obtained 

when the number of neighbors was 4 * N and α was 95. Pseudo Code is given in Figure 1. 
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In Markowitz’s unconstrained efficient frontier model, equation (1)-(4) defines the expected return 

of the portfolio as an equality constraint rather than an objective, and a single objective risk minimization 

problem is tried to be solved depending on the different levels of return desired. This problem can be 

easily solved by any solver that supports quadratic models. In this study, “qaprog” solver developed for 

quadratic programming problems is used.1 

In order for feasible solutions to be obtained in the constrained model, the constraints in equations 

(5) - (7) must be met. Repair procedure in Chang (2000) has been applied to ensure these restrictions. 

In order to obtain the suitability value of the solutions that meet the constraints, it is necessary to 

calculate the objective function, which includes the risk and return of the portfolio with certain weights. 

Using the weighting parameter λ, which expresses the trade-off between risk and return, the sum of the 

mean return of the portfolio and the total risk calculated over the variance-covariance data corresponds 

to the suitability value of a solution. Starting from λ = 0 with a chart corresponding to risk aversion and 

risk-bearing behavior for a certain level of return, an efficient frontier is created with 51 different weight 

values until λ = 1 with an increase of 0.02 each time. 

 

Figure 1. Pseudo-Code for Simulated Annealing Algorithm 

                                                      
1 For details; https://www.mathworks.com/help/optim/ug/quadprog.htm 

https://www.mathworks.com/help/optim/ug/quadprog.htm
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In order to evaluate the performance of the heuristic algorithm developed, Chang et al. (2000), by 

taking into account 2000 different values for the return values R, obtained 2000 points on the efficient 

frontier in the unconstrained portfolio optimization model. Chang et al. (2000), Woodside-Oriakhi, et 

al. (2011), by calculating this distance between this frontier, which is called standard efficient frontier 

(SEF) and solved with standard quadratic programming models, and the constrained efficient frontier 

(CEF) obtained by the heuristic algorithm, different heuristic algorithms, they evaluated the comparison 

of efficient frontier calculated with different constraint values by performance measures such as mean 

percentage error, median percentage error, minimum percentage error and maximum percentage error. 

Fernandez and Gomez (2007) measured this with the variance error and mean return error of the return, 

and Cura (2009), Sadigh et al. (2012) with the mean Euclidean distance, the variance of return error, 

and the mean return error. Their formulas are given in Equations (14), (15) and (16). Here, 
s

iv  , 
s

ir  

(i=1,……..2000) represents the risk and return values of the i point on the standard efficient frontier and 
h

jv  ,   h

jr  (j = 1,… ..ξ) the j point on the heuristic efficient frontier. Of the points on the standard efficient 

frontier, the points closest to the points on the heuristic efficient frontier are represented by  
j

s

iv  , 
j

s

ir . 

The closest point on the standard efficient frontier represented by ji  is obtained from Equation (13). 
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Mean Return Error: 
1

1
( 100   / )*

j

s h h
i j j

j

r r r






  (16) 

4. Findings 

The performance of the developed simulated annealing algorithm was first applied on the Hang 

Seng data set, which is frequently used in the literature, and the results were compared with previous 

studies. At this stage, after the algorithm performance was deemed sufficient, it was applied to the 

BIST30 index, which is the main data set of the study2. The daily average returns of the companies 

included in the BIST30 index were analyzed between 01/09/2020 and 11/12/2020. The companies 

included in the BIST30 index are given in Appendix A and the income distribution of the companies is 

given in Figure 2. Data on the weight and closing prices of companies in the BIST30 index can be 

accessed on the Borsa Istanbul Data Store. 

The results obtained with the Hang Seng data set were calculated using the values of K = 10, ɛ = 

0.01 and δ = 0.01 (i = 1,…, N) and 51 different λ values were set for the efficient frontier. Keeping all 

the remaining parameters the same, the optimal number of assets to be kept in the portfolio was decided 

by testing the values 5,10,15 and 20 for K in the BIST30 data set. 

                                                      
2 The Hang Seng data set included in the benchmarking examples can be obtained from 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Figure 2. Standard and Heuristic Efficient Frontier on The Hang Seng Benchmark Dataset 

Unconstrained efficient portfolios, named as standard efficient frontier and obtained with QA 

solver, are formed in the form of a continuous curve as seen with the “SEF” label in Figure 2. Efficient 

portfolios with restricted simulated annealing algorithm are formed as dashed lines on the graph with 

the label “K = 10”. It is expected that limited active portfolios will be slightly below the unconstrained 

efficient frontier. However, it is desired to be as close as possible. How close it is, as mentioned before, 

is demonstrated by certain performance criteria. Table 1 includes some of the pioneering studies that 

have achieved highly competitive results in the literature.  

Table 1 

Performance of existing studies on Hang Seng data series 

Studies and Methods MED VRE MRE 

Cura (2009)-PSO 0.0049 2.2421 0.7427 

Sadigh (2012)-HNN 0.0001 2.5908 0.7335 

Baykasoğlu (2015)- GRASP 0.0001 1.6400 0.6060 

Mozafari et al. (2011)-IPSO-SA 0.0001 1.6388 0.6059 

Kalaycı et al. (2017b)-ABC 0.0001 1.6432 0.6047 

Kalaycı et al. (2020)-AC-GA-ABC 0.0001 1.6395 0.6085 

This study -SA 0.0001 2.2961 0.6797 
PSO: Particle Swarm Optimization, HNN: Hopfield Neural Network, GRASP: Greedy Randomized 

Adaptive Search Procedure, IPSO: In- Particle Swarm Optimization, SA: Simulated Annealing, GA: 

Genetic Algorithm, ABC: Artificial Bee Colony, AC: Ant Colony 

In Table 1, the performance of the developed SA algorithm has been compared with these studies 

in the literature. As can be seen in Table 1, the SA algorithm did not pass the best result found so far. 

However, it can be said to have a comparable performance. Consequently, the experiments on the 

BIST30 data set were carried out with the conviction that the proposed algorithm can produce certain 

quality results with an acceptable error. 
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In Figure 3, the solid straight line standard efficient frontier graph and dashed graphs show the 

heuristic efficient frontiers calculated with different K values. It is observed that better results can be 

obtained if the number of assets in the portfolio is 10 and 15 in low risk levels and 5 in high risk levels. 

Considering all the risk levels, it is seen that it would not be appropriate to determine the number of 

assets as 20 in BIST 30. 

 

Figure 3. Heuristic Efficient Frontier of The BIST30 Data Set Obtained at Standard and Different 

Constraint Levels 

The optimal portfolios, which are considered to be better than their proximity to the efficient 

frontier, were calculated with the performance criteria mentioned above and the results are reported in 

Table 2. When the results are examined, it is seen that the optimal number of assets to be kept in the 

portfolio should be 10 according to each performance criterion, regardless of the risk level. Although 

the BIST30 data set has been studied over different years and with different heuristic algorithms, Akyer 

et al. (2018) also obtained better portfolios at all risk levels when the number of assets in the portfolio 

is 10. 

Table 2 

Distances between the standard efficient frontier and the constrained efficient frontier obtained on the 

Bist30 data set 

K MED VRE MRT 

5 0.0875 24.5717 2.5204 

10 0.0323 8.0012 1.6437 
15 0.0914 38.2803 2.9773 

20 0.1444 62.3945 2.9079 

5. Conclusion 

Portfolio optimization is one of the important research topics in finance. In this study, a solution 

has been made with simulated annealing algorithm, which is a powerful heuristic search algorithm 

whose success has been proven in many combinatorial optimization problems, over the average variance 
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asset constrained portfolio optimization problem. In the study, firstly, in order to understand whether 

the performance of the developed algorithm is sufficient or not, it has been solved with a well-known 

Hang-Seng benchmark data set and a comparison with the past solution results in Cura (2009)-PSO, 

Sadigh (2012)-HNN,  Baykasoğlu (2015)- GRASP, Mozafari et al. (2011)-IPSO-SA, Kalaycı et al. 

(2017b)-ABC and Kalaycı et al. (2020)-AC-GA-ABC is presented. It seems difficult to compete with 

hybrid methods, as the algorithms created by hybridizing population-based heuristics and local search-

based heuristics use the advantages of both methods simultaneously.  

According to these results, it has been observed that the developed algorithm produces comparable 

reasonable results, even though it is not the best solution presented so far. Then, a special application of 

the algorithm with the BIST30 data set was demonstrated and portfolios with different numbers of assets 

were created. These results provide an assessment of what should be the optimal number of assets that 

investors will keep in their portfolios at different risk levels. Akyer et al. (2018) found that increasing 

the number of assets does not reduce the portfolio risk. After looking at that BIST-30 study, it was 

concluded that the optimal number of assets in the portfolio should be 10. The answer to the question of 

what the optimal number of assets should be was sought with the SA algorithm, which searches on the 

same index with a different approach, and among the portfolios with 5, 10, 15 and 20 assets, the number 

of portfolios with the highest average return and the lowest risk was found to be 10. In this study, 

portfolio optimization with the simulated annealing approach was applied for the BIST30 index and it 

was concluded that the number of assets at low risk level and the number of assets at higher risk level 

should be less in order to approach the efficient frontier in the model developed based on the Markowitz 

mean-variance model. According to the findings, in addition to the risk-return assumptions, the number 

of assets required to be in the portfolio will be beneficial for the investor in the decision-making process 

by contributing to the conditions of the Markowitz mean-variance model. 
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Appendix 1 

A BIST 30 companies 

Akbank Inc. Arcelik Inc. 

Aselsan Electronic Industry and Trade Inc. Bim United Stores Inc. 

Emlak Konut Real Estate Investment Trust Inc. Dogan Group of Companies Holding Inc.   

Eregli Iron and Steel Factories Inc. Hacı Omer Sabancı Holding Inc. 

Kardemir Karabük Iron and Steel Inc. Fetrilizer Mills Inc. 

Koc Holding Inc. Koza Gold Enterprises Inc. 

Koza Anadolu Metal Mining Enterprises Inc. Migros Trade Inc. 

Oyak Cement Factories Inc. Pegasus Air Transpotation Inc. 

Petkim Petrochemical Holding Inc. Tav Airports Holding Inc. 

Ekfen Holding Inc. Turkcell Communication Services Inc. 

Tupras-Turkiye Oil RefineriesInc.  Turkish Airlines Inc. 

Turk - Telecommunication Inc. Turkiye Garanti Bank Inc. 

Turkiye Halk Bank Inc. Turkiye İs Banı Inc. 

Turkiye Industrial Development Bank Inc. Turkiye Sise and Cam Factories Inc.  
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