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ABSTRACT
Background/Purpose: Measuring vital signs in pediatric patients requires special consideration and adaptation due to 
varying anatomy and wide age range. In addition, children’s anxiety, uncooperativeness, and high activity levels further 
complicate measurements, necessitating devices and algorithms designed to minimize the inaccuracies and discomfort. 
In this work, the performance of a custom wearable patch mounted on the mid-sternum was validated in uncontrolled 
settings on a cohort including 84 pediatric patients. 
Methods: Three-minute-long electrocardiogram (ECG), seismocardiogram (SCG) and photoplethysmogram (PPG) signals 
were acquired using the custom patch. First, pre-processing and signal smoothing algorithms were employed to suppress 
the out-of-band and motion noise. Two different tasks were then studied: (i) Heart rate (HR) and respiration rate were 
derived from the ECG, PPG and SCG signals individually. During HR derivation from the SCG, a novel Teager-energy-based 
HR estimation algorithm was proposed. (ii) Clinical relevance of the SCG signals was shown through mapping the SCG 
characteristics to body mass index (BMI) and blood pressure values. 
Results: While the best HR estimation was achieved through the PPG-infrared signal with an absolute error of 2.2±2.1 
bpm, the best respiration estimation was achieved with PPG-Red signal with an error of 2.6±2.2 breaths/min. On the 
other hand, regression models resulted in a minimum of 85% confidence interval, revealing that the SCG characteristics 
indeed have salient correlation with the BMI and blood pressure values. 
Conclusion: Overall, the proposed patch and corresponding algorithms could potentially be leveraged for measuring vital 
signs from pediatric patients in clinical settings by minimizing the inaccuracies and discomfort encountered.
Keywords: Biomedical signal processing; Hemodynamic parameters; Wearable systems; Electrocardiogram; 
Seismocardiogram; Photoplethysmogram

ÖZET
Amaç: Pediatrik hastalarda yaşamsal parametrelerin ölçülmesi, değişken anatomi ve geniş yaş aralığı nedeniyle özel 
dikkat ve adaptasyon gerektirmektedir. Buna ek olarak, çocukların anksiyetesi, yeterince işbirliği yapmaması ve yüksek 
aktivite seviyeleri ölçümleri daha da karmaşık hale getirmektedir. Bu nedenle hataları ve kullanıcı rahatsızlığını en aza 
indirmek için tasarlanmış cihazlara ve algoritmalara büyük bir ihtiyaç vardır. Bu çalışmada, 84 pediatrik hastayı içeren 
bir kohort üzerinde, kontrolsüz ortamlarda, orta sternuma yerleştirilen özel bir giyilebilir yamanın performansı valide 
edilmiştir. 
Yöntem: Yama kullanılarak üç dakikalık elektrokardiyogram (EKG), sismokardiyogram (SCG) ve fotopletismogram (PPG) 
sinyalleri kaydedilmiştir. İlk olarak, bant dışı ve hareket gürültüsünü bastırmak için ön işleme ve sinyal yumuşatma 
algoritmaları kullanılmıştır. Ardından iki farklı analiz üzerinde çalışılmıştır: (i) Nabız ve solunum hızı, EKG, PPG ve SCG 
sinyallerinden ayrı ayrı türetilmiştir. SCG’den nabız türetme sırasında, yeni bir Teager-enerji tabanlı HR tahmin algoritması 
önerilmiştir. (ii) SCG sinyallerinin klinikte kullanılabilirliği, SCG özelliklerinin vücut kitle indeksi (BMI) ve kan basıncı 
değerleriyle eşleştirilmesiyle değerlendirilmiştir. 
Bulgular: En iyi nabız tahmini 2.2±2.1 bpm mutlak hata ile PPG-kızılötesi sinyali ile elde edilirken, en iyi solunum 
tahmini 2.6±2.2 nefes/dak hata ile PPG-Kırmızı sinyalinden elde edilmiştir. Öte yandan, regresyon modelleri minimum 
%85 güven aralığıyla sonuçlanmış ve SCG özelliklerinin BMI ve kan basıncı değerleri ile belirgin bir korelasyona sahip 
olduğunu ortaya koymuştur. 
Sonuç: Önerilen yama ve ilgili algoritmalar, klinik ortamlarda karşılaşılan yanlışlıkları ve rahatsızlıkları en aza indirerek 
pediatrik hastaların yaşamsal belirtilerini ölçmek için potansiyel olarak kullanılabilir.
Anahtar Kelimeler: Biyomedikal sinyal işleme; Hemodinamik parametreler; Giyilebilir sistemler; Elektrokardiyogram; 
Sismokardiyogram; Fotopletismogram

 

https://orcid.org/0000-0002-7544-5974


A Custom Wearable Patch for Pediatric Monitoring

Acıbadem Univ. Sağlık Bilim. Derg. 2025; 16 (1) 1-142

E ach year, pediatric clinics around the world admit 
millions of young patients, encompassing a di-
verse spectrum of medical needs and conditions. 

Based on the National Health Interview Survey reported 

by the Centers for Disease Control and Prevention, 95.0% 

of the children had a visit with a health care professional 

in 2023 (1). The clinical assessments during these visits of-

ten involve assessing vital signs like heart rate, respiration, 

blood pressure, and temperature, along with heart, lung, 

and vascular evaluations. Such assessments support ac-

curate diagnosis, monitor treatment, and help ensure the 

well-being of pediatric patients globally (2-4). 

Measuring vital signs in pediatric patients presents 

unique challenges, as devices designed for adults may 

not be suitable for children’s smaller size, wider age range 

(from newborns to adolescents) and anatomical features 

(5). Indeed, pediatric devices tend to be less advanced 

and available compared to adult devices, often trailing by 

up to around 10 years in technological development (6). 

Second, children may be anxious or uncooperative during 

vital sign assessments, introducing motion artifacts and 

affecting the reliability of readings (2). It has been found 

that 91% of children reported fear related to medical pro-

cedures, with 28% associating clinical exams with pain 

and 29% being scared of nursing activities (7). Thus, de-

vices and algorithms for pediatric population should be 

designed in a way that the discomfort and inaccuracies 

are minimized.

Physiological signals like the electrocardiogram (ECG), 

seismocardiogram (SCG) and photoplethsmogram (PPG) 

are essential in wearables, as they directly originate from 

the underlying physiology. The ECG assesses the heart’s 

electrical activity, while the SCG detects vibrations orig-

inating from heart contractions, with peaks and valleys 

reflecting cardiac events like aortic opening (AO), mitral 

closing (MC), etc. (8). Recent studies have utilized the SCG 

signal for various applications, ranging from estimating 

hemodynamic parameters to assessing valvular heart 

diseases (9-14). Finally, the PPG detects changes in light 

absorption caused by variations in arterial blood volume 

during the cardiac cycle. Analyzing PPG provides insights 

into blood oxygen levels, blood pressure, and vascular 

resistance (15-18). Thus, integrating physiological signals 

into wearable devices is a major advancement in health-

care, enhancing preventive care and supporting better 

health outcomes worldwide (19).

In this work, for the first time, the performance of a custom 

wearable patch was investigated in uncontrolled settings 

on a cohort including 84 pediatric patients visiting Koc 

University Hospital. The study involved the continuous 

acquisition of 3-minute-long ECG, tri-axial SCG and PPG 

(red and infra-red) signals. After pre-processing, heart rate 

(HR) and respiration rate were calculated using novel sig-

nal processing pipelines. Clinical relevance was assessed 

by performing regression analyses that mapped SCG fea-

tures to body mass index (BMI) and blood pressure values.

Material and Methods

In this work, we adapted our previously developed cus-
tom wearable patch and, for the first time, validated its 
clinical performance in uncontrolled settings on a cohort 
including 84 pediatric patients visiting Koc University 
Hospital from March to April 2024. Figure 1 shows the 
patch’s hardware layers and attachment locations.

Figure 1: The wearable patch used in data collection

 



Semiz Beren

Acıbadem Univ. Sağlık Bilim. Derg. 2025; 16 (1) 1-14 3

2.1 Custom Hardware 

The SCG and PPG were acquired using an ADXL355 accel-
erometer (at 500 Hz) and a MAX30102 sensor (at 200 Hz), 
respectively. The ECG was recorded with an AD8232 an-
alog front-end integrated circuit, through three gel elec-
trodes to form Einthoven’s triangle. Skin temperature was 
measured using an LMT70A sensor. The ECG and tempera-
ture were sampled at 500 Hz and 25 Hz with 10-bit resolu-
tion. As the microcontroller, ATMEGA2560 was used. Data 
was written to a file on a microSD card, with file naming 
controlled by the DS3231 real-time clock. The system ran 
on a 400 mAh Lithium-Polymer battery, charged via an 
LTC4062 charger, with hardware interrupts for optimized 
power management. The hardware and firmware specifi-
cations are detailed in (20).

2.2 Data Collection Protocol

The study was conducted under a protocol approved by 
the Koc University Institutional Review Board (2023.408.
IRB2.089) and all parents/guardians have provided their 
written consent. 84 children were participated in the 
study. Before data collection, the baseline values for the 
body temperature, oxygen saturation (SpO2), heart rate 
(HR), and systolic and diastolic blood pressures (SBP and 
DBP) were measured. The demographics and baseline he-
modynamic parameters are presented in Table I. 

Table 1. Subject demographics (mean ± std)

Age (years)
9.1 ± 4.3

Weight (kg)
33.9 ± 18.3

Height (cm)
131.4 ± 26.3

BMI (kg/m2)
18.1 ± 3.9

Gender
50.0 % Female

50.0 % Male

Chronic Disease
26.6 % Yes
71.4 % No

Heart Rate (bpm)
103.8 ± 22.7

Temperature 
(Celsius)

37.0 ± 0.6

SpO2 (%)
96.7 ± 3.6

Respiration Rate 
(breaths/min)

23.4 ± 4.1

Systolic BP
(mmHg)

109.4 ± 14.0

Diastolic BP
(mmHg)

74.4 ± 12.5

Data collection took place in a room in pediatric clinic 

without specific environmental restrictions, as factors like 

sound, humidity, and lighting did not impact the signals. 

The patch was placed on the mid-sternum using three 

gel electrodes, and to minimize motion artifacts, sub-

jects sat still in a relaxed state for three minutes. The ECG, 

SCG and PPG signals were acquired continuously with 

sampling rates of 500, 500 and 200 Hz, respectively. The 

start and end moments of the three-minute period were 

determined by gently tapping on the patch, generating 

two distinct peaks on the SCG signals. The challenges re-

garding the clinical implementation are covered in the 

Discussion section.

Analyses were conducted on the entire dataset, followed 

by sub-group analyses based on:

• Age groups: Pre-school (y < 6, n = 20, 4.2 ± 1.3), 

Elementary-school (6 ≤ y < 11, n = 37, 8.0 ± 1.2), 

Middle-school (11 ≤ y < 14, n = 8, 11.3 ± 0.7), and High-

school (14 ≤ y ≤ 18, n = 19, 15.7 ± 1.3).

• Gender: 42 subjects each for female and male groups.

• Chronic disease status: 24 subjects with chronic disease 

and 60 without

2.3 Signal Pre-Processing

After data collection, signal processing pipelines for es-

timating hemodynamic parameters were developed 

(Figure 2(a)). The signals were filtered with Kaiser window 

FIR bandpass filters to reduce noise while maintaining 

signal integrity. To calculate the heart rate, cut-off fre-

quencies of 1-15 Hz for PPG, 0.5-40 Hz for ECG, and 1-40 

Hz for SCG were used as per the literature (21, 22). Figure 

3 shows representative four-second segments of filtered 

ECG, SCG, and PPG signals from one subject. 
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Figure 2: (a) Pre-processing and signal processing pipelines for the estimation of hemodynamic parameters, (b) Pre-processing and signal 
processing pipelines for the clinical relevance assessment tasks, Min: minimum, Max: maximum, Amp: amplitude, Loc: location, BMI: body mass index, 
SBP: systolic blood pressure, DBP: diastolic blood pressure
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Figure 3: Four-second long segments of the collected signals

On the other hand, the frequencies below 1 Hz represent 
the respiration information corresponding to the respi-
ration-induced chest movements (23). Hence, while ex-
tracting respiratory information from the SCG and PPG 
signals, the original raw signals were filtered using an 
upper cut-off frequency as 1 Hz.  The PPG and SCG sig-
nals were then Gaussian filtered to remove the motion 
artifacts for ease of peak detection. The Gaussian window 
was applied to the signal, averaging the points to smooth 
high-frequency noise while retaining signal characteris-
tics. The Gaussian window and width factor (alpha) values 
were determined heuristically to ensure that the signals 
were not over-smoothed (losing fiducial points) or un-
der-smoothed (having redundant fluctuations). For the 
PPG and SCG signals, the window size and width factor 
pairs were selected as (25, 2.3) and (250, 2.3), respectively, 
in alignment with the corresponding sampling rates.

2.4 Estimation Hemodynamic Parameters

2.4.1 Estimation of Heart Rate from ECG and PPG Signals

To compute the HR values from the collected signals, the 
following steps were implemented:

1) As the reference values, the baseline HR measurements 
acquired prior to data collection were used.

2) For the ECG-based computation, the filtered signal (0.5-
40 Hz) was first normalized. Then, the R-peaks were de-
tected with a simple peak detection algorithm (minimum 
peak height: 0.6, minimum peak distance: 0.33 of the sam-
pling rate). The consecutive R-peak intervals formed an RR 
difference vector, which was used to calculate heart rate 
(HR) in beats per minute (bpm) using Equation 1.

3) For the PPG-based computation, the time intervals be-
tween the consecutive peaks on the filtered (1-15 Hz) and 
Gaussian-windowed red and infrared PPG signals were 
computed, and stored as a PP difference vector, similar to 
the ECG case.
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4) Equations 2 and 3 were used to calculate the mean 
absolute error (MAE) and percentage error, where ‘actual’ 
refers to the reference HR values and ‘calculated’ refers to 
the HR values derived from the ECG, PPG-red, and PPG-
infrared signals (Fs: sampling rate, std: standard deviation).

(1)

(2)

(3)

2.4.2 Teager-Operator-based Heart Rate Estimation from 
SCG Signals

The Teager energy operator, derived from the energy of 
an oscillator, detects instantaneous changes in signals, 
such as amplitude variations, frequency shifts, or disconti-
nuities (24). In our previous work, the Teager operator was 
leveraged to locate the clicks in the joint sound signals 
acquired from the children with juvenile idiopathic arthri-
tis (25). When an SCG signal is considered, detecting the 
aortic opening (AO) points using a simple peak detection 
algorithm can be challenging as (i) there are additional 
neighboring peaks representing mitral closing (MC) and 
aortic closing (AC) moments, and (ii) there are added noise 
due to motion artifacts and signal variability, which make 
AO points more subtle. Hence, we hypothesized that the 
Teager energy operator could accurately locate AO points, 
even when simple peak detection algorithms fail.

For any discrete-time signal , the Teager energy () at time  
is calculated using the three consecutive samples of the 
signal as in Equation 4.

(4)

In this work, the Teager energy of the filtered SCG-Z sig-
nal (1-40 Hz) was calculated (Equation 4). The upper en-
velope of the Teager operator was then generated to 

emphasize significant peaks representing the AO points 
(26). The time intervals between consecutive spikes were 
computed, and their mean value was used to calculate 
the HR (Equation 1). Error calculations were done using 
Equations 2 and 3.

2.4.3 Estimation of Respiration

To calculate the respiration rate, two different approaches 
(SCG-Z-based and PPG-Red-based) were used. PPG-Red 
was chosen over PPG-IR, as it is less prone to motion ar-
tifacts due to relatively lower wavelength. As previously 
explained, both signals were filtered between 0-1 Hz and 
smoothed with a Gaussian window. Peak-to-peak inter-
vals were then calculated, with the peak-valley transitions 
corresponding to exhalation-inhalation cycles, where 
each peak-to-peak duration represents a full respiration 
cycle. The resulting peak-to-peak vector was then used in 
an equation similar to Equation 1, and respiration rate in 
breaths/min was calculated. The errors were again calcu-
lated using Equations 2 and 3.

2.4.4 Investigating the Clinical Relevance of SCG

The clinical relevance of SCG signal characteristics was as-
sessed by correlating them with physiological parameters 
(Figure 2(b)). The R-peaks from the ECG (0.5-40 Hz)  were 
leveraged to divide the SCG-Z (1-40 Hz) into individual 
beats, each truncated to the minimum R-R interval length. 
A total of 13,603 SCG-Z beats from 84 subjects were ana-
lyzed, extracting 12 temporal features per beat (27): the 
minimum and maximum amplitudes and correspond-
ing locations within the systolic (0-250ms) and diastolic 
(250-500ms) portions, peak-to-peak amplitude, energy, 
entropy and zero-crossing rate. Three XGBoost regression 
models were trained to map the SCG characteristics to 
body mass index (BMI), sytolic blood pressure (SBP), and 
diastolic blood pressure (DBP), with performances vali-
dated using 5-fold cross-validation and assessed by mean 
absolute percentage error (MAPE).

Results

3.4.1 Estimation of Heart Rate from ECG and PPG Signals

The absolute and percentage errors for ECG and PPG-
based calculations were presented in Table 2, and the 
boxplots for absolute errors are shown in Figure 4. While 
the ECG-derived resulted in an absolute and percentage 
errors of 4.9 ± 6.7 bpm and 4.7 ± 6.8 %, respectively; these 
values were 2.5 ± 2.4 bpm and 2.3 ± 1.9 % for the PPG-Red, 
and 2.2 ± 2.1 bpm and 2.1 ± 1.9 % for the PPG-IR. 
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3.4.2 Teager-Operator-based Heart Rate Estimation from 
SCG Signals

Figure 5(a) shows a 10-second SCG signal and its Teager 
energy plot. While some SCG segments (green box) were 
clean enough for accurate peak detection, others (yellow 
box) contained motion noise. Direct peak detection in the 
noisy regions would thus be unreliable, but the Teager 

operator successfully identified the AO peaks in these ar-
eas, allowing for accurate HR computation. Our algorithm 
yielded absolute and percentage errors of 4.6 ± 5.4 bpm 
and 4.4 ± 6.0 %, respectively (Table 2). This result was in-
deed comparable to the one obtained from ECG and sug-
gests a confidence interval of at least 95%. The correspond-
ing boxplots for absolute errors are shown in Figure 4.

Figure 4: Box plots representing the absolute error values for heart rate and respiration rate estimation tasks.
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Figure 5: (a) Teager energy operator of a 10-second long SCG segment and detected beats, 
(b) Five-second long respiration signals derived from SCG and PPG signals
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while females exhibited lower errors in respiration rate 
analysis (Table 4). On the other hand, for all analyses, pa-
tients with chronic disease resulted in lower errors com-
pared to the ones not having.

and 11.5 ± 10.3 %; these results were 3.1 ± 3.2 breaths/min 
and 12.9 ± 11.1 % for the SCG-Z-based derivation. 

3.4.4 Investigating the Clinical Relevance of SCG

For the BMI-, SBP- and DBP-mapping tasks, the train and 
test MAPE pairs were (11.3%, 14.4%), (9.7%, 11.5%) and 
(9.2%, 11.1%), respectively (Table 2). Overall, all models re-
sulted in a minimum of 85% confidence interval, revealing 
that the SCG characteristics indeed have salient correla-
tion with the BMI, SBP and DBP values. 

3.4.3 Estimation of Respiration

To derive the respiration information, an SCG-Z-based 
and PPG-Red-based derivation pipelines were used and 
compared. Sample five-second-long segments from the 
resulting signals are presented in Figure 5(b). As seen, the 
oscillation patterns are the same with a slight variance in 
the amplitude values. This was expected as the sensors 
are located in different regions on the patch. The estimat-
ed respiration rates are presented in Table 2. While the res-
piration rate estimated from PPG-Red resulted in an abso-
lute error and percentage error of 2.6 ± 2.2 breaths/min 

Table 2. Estimated Cardiovascular Parameters (mean ± std) and results for the regression tasks

Absolute Error Percentage Error

ECG HR 4.9 ± 6.7 bpm 4.7 ± 6.8 %

PPG-Red HR 2.5 ± 2.4 bpm 2.3 ± 1.9 %

PPG-IR HR 2.2 ± 2.1 bpm 2.1 ± 1.9 %

SCG HR 4.6 ± 5.4 bpm 4.4 ± 6.0 %

PPG-Red Respiration 2.6 ± 2.2 breaths/min 11.5 ± 10.3 %

SCG-Z Respiration 3.1 ± 3.2 breaths/min 12.9 ± 11.1 %

Clinical Relevance (Regression Task)

5-fold 
Train MAPE

5-Fold
Test MAPE

BMI-mapping 11.3% error 
(88.7% confidence)

14.4% error 
(85.6% confidence)

SBP-mapping 9.7% error 
(90.3% confidence)

11.5% error 
(88.5% confidence)

DBP-mapping 9.2% error 
(90.8% confidence)

11.1% error 
(88.9% confidence)

Sub-group results revealed a general decrease in error 
rates for both heart rate and respiration rate measure-
ments as age increases (Table 3). When the effect of gen-
der was investigated, male patients showed relatively 
lower errors in heart rate estimation and regression tasks, 
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Table 3. Sub-group Analysis for Different Age Groups (mean ± std)

Heart Rate

ECG SCG PPG-Red PPG-IR

Pre-School
(y < 6)

Abs err 8.1 ± 10.1 bpm 7.3 ± 8.4 bpm 5.1 ± 4.3 bpm 3.3 ± 3.4 bpm

% error 7.7 ± 11.0 % 6.6 ± 9.1 % 3.9 ± 3.1 % 2.8 ± 2.7 %

Elem-School
(6 ≤ y < 11)

Abs err 4.6 ± 6.2 bpm 4.0 ± 4.5 bpm 1.7 ± 1.3 bpm 1.4 ± 1.0 bpm

% error 4.2 ± 5.6 % 3.8 ± 4.2 % 1.6 ± 1.1 % 1.3 ± 0.9 %

Mid-School
(11 ≤ y < 14)

Abs err 3.6 ± 2.9 bpm 4.7 ± 3.3 bpm 3.2 ± 1.4 bpm 5.9 ± 2.9 bpm

% error 3.5 ± 2.8 % 4.3 ± 3.2 % 3.0 ± 1.9 % 5.5 ± 3.4 %

High-School
(14 ≤ y ≤ 18)

Abs err 2.9 ± 3.1 bpm 3.3 ± 4.3 bpm 2.1 ± 1.3 bpm 2.3 ± 1.2 bpm

% error 3.3 ± 4.3 % 3.9 ± 6.8 % 2.3 ± 1.7 % 2.5 ± 1.6 %

Respiration Rate

SCG PPG

Pre-School
(y < 6)

Abs err 5.0 ± 3.0 breath/min 7.3 ± 4.8 breath/min

% error 19.3 ± 11.5 % 26.4 ± 14.8 %

Elem-School
(6 ≤ y < 11)

Abs err 2.1 ± 1.7 breath/min 2.2 ± 1.6 breath/min

% error 10.1 ± 10.2 % 10.1 ± 7.4 %

Mid-School
(11 ≤ y < 14)

Abs err 3.4 ± 2.7 breath/min 2.7 ± 1.4 breath/min

% error 17.4 ± 12.8 % 14.1 ± 6.4 %

High-School
(14 ≤ y ≤ 18)

Abs err 1.3 ± 0.7 breath/min 2.0 ± 2.6 breath/min

% error 5.7 ± 3.2 % 8.4 ± 10.8 %

Clinical Relevance (Regression Task) – 5 fold

SBP DBP BMI

Pre-School
(y < 6)

Train Mape 4.8 ± 0.6 % 9.2 ± 1.2 % 4.9 ± 0.1 %

Test Mape 6.5 ± 0.5 % 11.9 ± 0.8 % 6.8 ± 0.5 %

Elem-School
(6 ≤ y < 11)

Train Mape 6.2 ± 0.5 % 7.9 ± 0.1 % 9.1 ± 0.1 %

Test Mape 7.9 ± 0.3 % 10.4 ± 0.5 % 12.0 ± 0.5 %

Mid-School
(11 ≤ y < 14)

Train Mape 4.6 ± 0.4 % 3.9 ± 0.1 % 4.4 ± 0.1 %

Test Mape 5.4 ± 0.2 % 5.5 ± 0.6 % 6.1 ± 0.3 %

High-School
(14 ≤ y ≤ 18)

Train Mape 3.9 ±  0.1% 4.9 ± 0.1 % 8.4 ± 0.1 %

Test Mape 5.3 ± 0.3 % 6.4 ± 0.2 % 11.3 ± 0.5 %
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Table 4. Sub-group Analysis for Different Genders and Chronic Disease Conditions (mean ± std)

GENDER-BASED GROUPING
Heart Rate

ECG SCG PPG-Red PPG-IR

Female
Abs err 5.2 ± 6.7 bpm 5.2 ± 5.4 bpm 3.0 ± 2.9 bpm 2.3± 2.0 bpm

% error 5.4 ± 7.7 % 5.4 ± 6.9 % 2.6 ± 2.1 % 2.3 ± 2.1 %

Male
Abs err 4.5 ± 6.6 bpm 3.9 ± 5.5 bpm 1.9 ± 1.4 bpm 2.2 ± 2.1 bpm

% error 4.0 ± 5.7 % 3.3 ± 4.7 % 1.9 ± 1.5 % 1.9 ± 1.6 %

DISEASE-BASED GROUPING Heart Rate

ECG SCG PPG-Red PPG-IR

Chronic Disease 
Abs err 2.7 ± 2.6 bpm 3.2 ± 3.7 bpm 1.3 ± 1.2 bpm 1.7 ± 1.2 bpm

% error 2.8 ± 3.6 % 3.6 ± 5.7 % 1.3 ± 1.3 % 1.6 ± 1.1 %

NO Chronic Disease 
Abs err 5.9 ± 7.6 bpm 5.2 ± 6.0 bpm 2.8 ± 2.5 bpm 2.4 ± 2.2 bpm

% error 5.6 ± 7.7 % 4.8 ± 6.1% 2.5 ± 1.9 % 2.2 ± 2.1 %

GENDER-BASED GROUPING
Respiration Rate

SCG PPG

Female
Abs err 2.5 ± 2.4 breath/min 2.9 ± 3.1 breath/min

% error 11.6 ± 12.1 % 12.2 ± 11.1 %

Male
Abs err 2.6 ± 2.1 breath/min 3.4 ± 3.3 breath/min

% error 11.4 ± 8.3 % 13.9 ± 11.0 %

DISEASE-BASED GROUPING
Respiration Rate

SCG PPG

Chronic Disease 
Abs err 1.9 ± 2.3 breath/min 0.2 ± 0.1 breath/min

% error 10.7 ± 15.1 % 4.3 ± 4.5 %

NO Chronic Disease 
Abs err 2.7 ± 2.2 breath/min 3.7 ± 3.3 breath/min

% error 11.7 ± 9.0 % 15.3 ± 11.2 %

GENDER-BASED GROUPING
Clinical Relevance (Regression Task) – 5 fold

SBP DBP BMI

Female
Train Mape 9.5 ± 0.4 % 8.4 ± 0.1 %   10.4 ± 0.1 %

Test Mape 11.2 ± 0.3 % 11.1 ± 0.3 %  13.9 ± 0.5 %

Male
Train Mape 7.5 ± 0.7 %  6.1 ± 0.1 %  9.9 ± 0.1 %

Test Mape 9.4 ± 0.2 %  8.3 ± 0.2 %  12.9 ± 0.3 %

DISEASE-BASED GROUPING
Clinical Relevance (Regression Task) – 5 fold

SBP DBP BMI

Chronic Disease 
Train Mape 5.9 ± 0.1 % 7.1 ± 0.1 % 10.5 ± 0.1%

Test Mape 8.1 ± 0.3 % 9.5 ± 0.5 % 12.4 ± 5.7 %

NO Chronic Disease 
Train Mape 10.2 ± 0.2 % 9.1 ± 0.1 % 10.5 ± 0.1%

Test Mape 12.1 ± 1.7 % 11.1 ± 0.4 % 13.6 ± 0.4 %
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Table 5. Comparison with the literature for the SCG-based HR methods

METHOD Absolute
Error % Error

Direct Peak Detection
Without envelope 6.4 ± 6.2 bpm 6.1 ± 6.2 %

With envelope 5.9  ± 7.1 bpm 5.8 ± 7.4 %

Template Matching with Correlation Computation (28) 16.1 ± 14.9 bpm 17.3 ± 19.7 %

Wavelet Decomposition (29)
Without envelope 5.6 ± 7.2 bpm 5.7 ± 7.7 %

With envelope 5.5 ± 7.1 bpm 5.5 ± 7.5 %

Teager Energy Operator
Without envelope 5.8 ± 7.4 bpm 5.6 ± 7.9 %

With envelope 4.6 ± 5.4 bpm 4.4 ± 6.0 %

making AO point identification difficult.  Our proposed 

approach’s superior performance has been compared 

with the common methods in the literature as well (Table 

5). These methods were including direct peak detection, 

template matching with correlation computation (28) and 

wavelet decomposition (29). Among these, the closest re-

sults were obtained when wavelet decomposition was 

used, whereas template matching and direct peak de-

tection suffered from inaccuracies due to motion-related 

variation in the SCG morphology. Hence, given SCG’s com-

mon use in wearable systems, this Teager-based method 

can enhance vital parameter monitoring while reducing 

computational and hardware demands.

Discussion

PPG-derived HR trials resulted in lower errors than ECG-
derived HR, contrary to the expectations. This may be due 
to two factors: (i) The ECG signal quality was compromised 
by motion and contact loss between the skin and elec-
trodes, as children often get nervous and sweat in clinical 
settings. (ii) PPG signals were smoothed with a Gaussian 
window, reducing oscillations and noise while preserving 
key peaks, making peak detection more accurate.

On the other hand, deriving HR from SCG has always been 
challenging due to the noise from movement and com-
plex waveform. Additionally, it contains multiple neigh-
bouring peaks corresponding to various cardiac phases, 

In respiration derivation, both SCG- and PPG-based meth-
ods showed similar performance, with the PPG-Red meth-
od slightly outperforming SCG-Z. The 3-breath error could 
be attributed to signal quality, but another factor might 
be the reliability of the reference measurement. The ref-
erence respiration rate was determined using manual 
breath counting rather than a digital tool, which could 
have introduced inaccuracies that were reflected in the 
algorithm’s output.

The clinical relevance of SCG was also observable in the 
BMI and blood pressure mapping models. 

The transmission of vibrations from the heart to the ac-
celerometer is influenced by various tissues such as bone, 
muscle, fat, and skin, whose composition and thickness 
vary across individuals (30). These anatomical differences 
impact SCG characteristics, which were observed in our 
BMI estimation results in parallel. Similarly, the SBP and 

DBP estimation tasks resulted in satisfactory performance. 
As previously explained, the peaks and valleys of the SCG 
signal represent cardiac valve movements, similar to the 
blood pressure waveform where the valleys mark aortic 
valve opening (diastolic pressure) and the dicrotic notch 
corresponds to aortic valve closure. Literature demon-
strates that time differences between fiducial points in 
the ECG, SCG, and PPG signals can be used in pulse ar-
rival time (PAT) and pulse transit time (PTT)-based blood 
pressure estimation (31-33). However, these approaches 
require two different signals to derive the blood pressure 
values. On the other hand, in our work, we showed that 
the SCG signal features could directly be mapped to blood 
pressure values, without requiring any additional signals. 
This might potentially contribute to alleviate the compu-
tational or hardware-related needs.

When sub-groups results were investigated, PPG methods 
showed lower errors across all age groups in all tasks. For 
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