BibTex RIS Cite

USAGE OF MASS SPECTROMETRY IN MICROBIOLOGY

Year 2011, Issue: 4, 177 - 183, 01.12.2011

Abstract

All over the world, mass spectrometry methods are being more used in clinical laboratories because of their being cost-effective and faster than the routine conventional methods. Mass spectrometry is expected to have a very important role in routine clinical microbiology laboratory in the future. The particular focus is on protein markers and proteomic, which are today fundamentally related with biomedical mass spectrometry. The methods discussed here in the statement of bacterial identification, are equally appropriate to viruses, fungi, and parasites. It is important to understand what mass spectrometry has achieved, what are its current capabilities, and what might be expected in the future

References

  • Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 2010; 48(5):1549-54.
  • Prome J C, Aurelle H, Couderc F, Prome D, Savagnac A and Treilhou M. Structural determination of unsaturated long chain fatty acids from Mycobacteria by capillary GC and collision activation dissociation MS. In: Analytical Microbiology Methods. A. Fox, S.L. Morgan, L. Larsson & G. Odham eds.1st ed. , New York , Plenum Pres, 1990, pp. 163-178.
  • Odham G, Larsson L, and P-A. Mardh P-A (ed.). 1984. Gas chromatography/mass spectroscopy applications in microbiology. Plenum Press, New York, N.Y.
  • Fox A. Mass spectrometry for species or strain identification after culture or without culture: Past, present, and future. J Clin Microbiol. 2006;44(8):2677-80.
  • Fenselau C, and P. A. Demirev. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 2001; 20:157-171.
  • Anhalt J P, and Fenselau C. Identification of bacteria using mass spectrometry. Anal. Chem 1975; 47:219-25.
  • Camara J E, and Hays F A. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Bioanal. Chem 2007; 389:1633-8.
  • Conway G C, Smole S C, Sarracino D A, Arbeit R D, and Leopold P E. Phyloproteomics: species identification of Enterobacteriaceae using matrix- assisted laser desorption/ionization time-of-flight mass spectrometry. J Mol Microbiol Biotechnol 2001; 3:103-12.
  • Edwards-Jones V, Claydon M A, Evason D J, Walker J, Fox A J , and Gordon D B. Rapid discrimination between methicillin-sensitive and methicillin- resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol 2000; 49:295-300.
  • Kumar M P, Vairamani M, Raju R P, Lobo C, Anbumani N, Kumar C P, Menon T, and Shanmugasundaram S. Rapid discrimination between strains of beta haemolytic streptococci by intact cell mass spectrometry. Indian J Med Res 2004; 119:283-8.
  • Barbuddhe S B, Maier T, Schwarz G, Kostrzewa M, Hof H, Domann Chakraborty E T et al. Rapid identification and typing of Listeria species by matrix- assisted laser desorption-ionization time of flight mass spectrometry. Appl Environ Microbiol 2008; 74:5402-7.
  • Ryzhov V, Hathout Y, and Fenselau C. Rapid characterization of spores of Bacillus cereus group bacteria by matrix-assisted laser desorption- ionization time-of-flight mass spectrometry. Appl Environ Microbiol 2000; 66:3828-34.
  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P E, Rolain J M, and Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis2009; 49:543-51.
  • van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol.2010; 48(3):900-7.
  • Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly. 2010;24:140.
  • Ferreira L, Sánchez-Juanes F, González-Avila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol.2010;48(6):2110-5.
  • Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol. 2010; 48(4):1481-3.
  • Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J et al. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol.2010; 48(5):1542-8.
  • Cain T, Lubman , D M and Weber W J. Differentiation of bacteria using protein profiles from matrix assisted laser desorption/ionization time of flight mass spectrometry. Rapid Commun Mass Spectrom 1994; 8:1026-30.
  • Claydon M A, Davey S N, Edwards-Jones V, and Gordon D B. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol.1996; 14:1584-86.
  • Hathout Y, Demirev P A, Ho Y P, Bundy J L, Ryzhov V, Sapp L et al. Identification of Bacillus spores by matrix-assisted laser desorption ionization-mass spectrometry. Appl Environ Microbiol 1999; 65:4313-9.
  • Lay J O. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 2001; 20:172-94.
  • Demirev P A, Ramirez J, and Fenselau C. Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Anal Chem 2001;73:5725-31.
  • Castanha E R, Fox K F, and Fox A. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of intact small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods 2006;64:27-45.
  • Liu H, Bergman N H, Thomason B, S. Shallom, A. Hazen, J. Crossno et al. Formation and composition of the Bacillus anthracis endospore. J Bacteriol 2004;186:164-78.
  • Dworzanski J P, Snyder A P, Chen R, Zhang H, Wishart D, and Li L. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring. Anal Chem 2004; 76:2355-66.
  • Ferrando R, Szponar B, Sánchez A, Larsson L, and Vaero-Guillén P L. 3-Hydroxy fatty acids in saliva as diagnostic markers in chronic peridontitis. J Microbiol Methods 2005. 62;285-91.
  • Fox A, Fox K, Christensson B, Krahmer M, and Harrelson D. Absolute identification of muramic acid at trace levels in human septic fluids in vivo and absence in aseptic fluids. Infect Immun 1996;64:3911-55.
  • Kozar M P, Krahmer M T, Fox A, and Gray B M. Failure to detect muramic acid in normal rat tissues but detection in cerebrospinal fluid from patients with pneumococcal meningitis. Infect Immun 2000;68:4688-98.
  • Johnson YA, Nagpal M, Krahmer M T, Fox K F, and Fox A. Precise molecular weight determination of PCR products of the 16S-23S rRNA interspace region using electrospray quadrupole mass spectrometry for differentiation of B. subtilis and B. atrophaeus, closely related species of bacilli. J Microbiol Methods 2000; 40:241-54.
  • Madonna A J, Cuyk S V, and K. J. Voorhees. Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom 2003; 17:257-63.

Kütle Spektrometrisinin Mikrobiyolojide Kullanımı

Year 2011, Issue: 4, 177 - 183, 01.12.2011

Abstract

Tüm dünyada kütle spektrometri yöntemleri ekonomik olarak daha uygun ve günlük kullanılan ticari yöntemlerden daha hızlı olmaları nedeniyle daha fazla kullanılmaya başlanmıştır. Kütle spektrometrisinin gelecekte rutin klinik mikrobiyoloji laboratuvarında çok önemli bir rolünün olması beklenmektedir. Bugün biyomedikal kütle spektrometrisi ile ilişkili olan protein belirteçleri ve proteomikler en önemli odak noktalarıdır. Burada bakteri tür saptamalarında tartışılan yöntemlerin, aynı şekilde virüsler, mantar ve parazitler için de kullanımı uygundur. Kütle spektrometrisinin mikrobiyolojide kullanımı, şu anda yapabilecekleri ve gelecekte neler beklenebileceğinin anlaşılması önemlidir

References

  • Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 2010; 48(5):1549-54.
  • Prome J C, Aurelle H, Couderc F, Prome D, Savagnac A and Treilhou M. Structural determination of unsaturated long chain fatty acids from Mycobacteria by capillary GC and collision activation dissociation MS. In: Analytical Microbiology Methods. A. Fox, S.L. Morgan, L. Larsson & G. Odham eds.1st ed. , New York , Plenum Pres, 1990, pp. 163-178.
  • Odham G, Larsson L, and P-A. Mardh P-A (ed.). 1984. Gas chromatography/mass spectroscopy applications in microbiology. Plenum Press, New York, N.Y.
  • Fox A. Mass spectrometry for species or strain identification after culture or without culture: Past, present, and future. J Clin Microbiol. 2006;44(8):2677-80.
  • Fenselau C, and P. A. Demirev. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 2001; 20:157-171.
  • Anhalt J P, and Fenselau C. Identification of bacteria using mass spectrometry. Anal. Chem 1975; 47:219-25.
  • Camara J E, and Hays F A. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Bioanal. Chem 2007; 389:1633-8.
  • Conway G C, Smole S C, Sarracino D A, Arbeit R D, and Leopold P E. Phyloproteomics: species identification of Enterobacteriaceae using matrix- assisted laser desorption/ionization time-of-flight mass spectrometry. J Mol Microbiol Biotechnol 2001; 3:103-12.
  • Edwards-Jones V, Claydon M A, Evason D J, Walker J, Fox A J , and Gordon D B. Rapid discrimination between methicillin-sensitive and methicillin- resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol 2000; 49:295-300.
  • Kumar M P, Vairamani M, Raju R P, Lobo C, Anbumani N, Kumar C P, Menon T, and Shanmugasundaram S. Rapid discrimination between strains of beta haemolytic streptococci by intact cell mass spectrometry. Indian J Med Res 2004; 119:283-8.
  • Barbuddhe S B, Maier T, Schwarz G, Kostrzewa M, Hof H, Domann Chakraborty E T et al. Rapid identification and typing of Listeria species by matrix- assisted laser desorption-ionization time of flight mass spectrometry. Appl Environ Microbiol 2008; 74:5402-7.
  • Ryzhov V, Hathout Y, and Fenselau C. Rapid characterization of spores of Bacillus cereus group bacteria by matrix-assisted laser desorption- ionization time-of-flight mass spectrometry. Appl Environ Microbiol 2000; 66:3828-34.
  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P E, Rolain J M, and Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis2009; 49:543-51.
  • van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol.2010; 48(3):900-7.
  • Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly. 2010;24:140.
  • Ferreira L, Sánchez-Juanes F, González-Avila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol.2010;48(6):2110-5.
  • Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol. 2010; 48(4):1481-3.
  • Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J et al. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol.2010; 48(5):1542-8.
  • Cain T, Lubman , D M and Weber W J. Differentiation of bacteria using protein profiles from matrix assisted laser desorption/ionization time of flight mass spectrometry. Rapid Commun Mass Spectrom 1994; 8:1026-30.
  • Claydon M A, Davey S N, Edwards-Jones V, and Gordon D B. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol.1996; 14:1584-86.
  • Hathout Y, Demirev P A, Ho Y P, Bundy J L, Ryzhov V, Sapp L et al. Identification of Bacillus spores by matrix-assisted laser desorption ionization-mass spectrometry. Appl Environ Microbiol 1999; 65:4313-9.
  • Lay J O. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 2001; 20:172-94.
  • Demirev P A, Ramirez J, and Fenselau C. Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Anal Chem 2001;73:5725-31.
  • Castanha E R, Fox K F, and Fox A. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of intact small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods 2006;64:27-45.
  • Liu H, Bergman N H, Thomason B, S. Shallom, A. Hazen, J. Crossno et al. Formation and composition of the Bacillus anthracis endospore. J Bacteriol 2004;186:164-78.
  • Dworzanski J P, Snyder A P, Chen R, Zhang H, Wishart D, and Li L. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring. Anal Chem 2004; 76:2355-66.
  • Ferrando R, Szponar B, Sánchez A, Larsson L, and Vaero-Guillén P L. 3-Hydroxy fatty acids in saliva as diagnostic markers in chronic peridontitis. J Microbiol Methods 2005. 62;285-91.
  • Fox A, Fox K, Christensson B, Krahmer M, and Harrelson D. Absolute identification of muramic acid at trace levels in human septic fluids in vivo and absence in aseptic fluids. Infect Immun 1996;64:3911-55.
  • Kozar M P, Krahmer M T, Fox A, and Gray B M. Failure to detect muramic acid in normal rat tissues but detection in cerebrospinal fluid from patients with pneumococcal meningitis. Infect Immun 2000;68:4688-98.
  • Johnson YA, Nagpal M, Krahmer M T, Fox K F, and Fox A. Precise molecular weight determination of PCR products of the 16S-23S rRNA interspace region using electrospray quadrupole mass spectrometry for differentiation of B. subtilis and B. atrophaeus, closely related species of bacilli. J Microbiol Methods 2000; 40:241-54.
  • Madonna A J, Cuyk S V, and K. J. Voorhees. Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom 2003; 17:257-63.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Işın Akyar

Publication Date December 1, 2011
Published in Issue Year 2011Issue: 4

Cite

EndNote Akyar I (December 1, 2011) Kütle Spektrometrisinin Mikrobiyolojide Kullanımı. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 4 177–183.