BibTex RIS Cite

The Relationship Between Trace Elements and Complications of Diabetes Mellitus

Year 2020, Issue: 4, 658 - 663, 01.12.2020

Abstract

Objectives: The effect of trace elements zinc Zn , chromium Cr , selenium Se , iron Fe , copper Cu , vanadium Va on the glucose metabolism is known. The aim of this study was to determine the relationship between trace element levels and acute diabetes mellitus DM complications in patients presented to the emergency department ED . Patients and Methods: Patients presented to the ED of a university hospital between January and February 2012 over the age of 18 with newly or previously diagnosed DM, were included in the study. The control group was selected from healthy individuals over the age of 18 without any known disease or drug use. Trace element levels were obtained by the atomic absorption spectrophotometric method using the TQ X5 ICP-MS device. Trace element levels were compared between DM and control group as well as between DM complications and control group. Results: A total of 249 124 female patients were included in the study. 151 84 women were in the study group and 98 40 women in the control group. When the measured trace element levels of the diabetic patients were compared with those of the control group, there was no significant difference in the mean values p>0.05 . There was also no significant difference between patients n=11 with acute diabetic complications diabetic ketoacidosis, diabetic ketosis and hyperglycemia and the control group p>0.05 . Conclusion: In this study, no significant difference was found between the trace element levels of the diabetic complications group and those of the control group

References

  • Murray R, Mayes PA, Rodwell VW, Granner DK. Harper’s Biochemistry 25th ed. Appleton & Lange; 2000.
  • Candilish DJE. Minerals. J Am Coll Nutr 2000;17:286–310. http:// www.nutrition-matters.co.uk/free_docs/tracelements.htm
  • Haase H, Overbeck S, Rink L. Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol 2008;43:394–408. [CrossRef]
  • Saper RB, Rash R. Zinc: an essential micronutrient. Am Fam Physician 2009;79:768–72. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2820120/
  • Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 1994;102:5–46. [CrossRef]
  • Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010;2010:453892. [CrossRef]
  • Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 2008;43:370–7. [CrossRef]
  • Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab 2003;29:579–85. [CrossRef]
  • Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr 1998;17:109– 15. [CrossRef]
  • Suliburska J, Bogdanski P, Pupek-Musialik D, Krejpcio Z. Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res 2011;139:137–50. [CrossRef]
  • Goldhaber SB. Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 2003;38:232–42. [CrossRef]
  • Wallach S. Clinical and biochemical aspects of chromium deficiency. J Am Coll Nutr 1985;4:107–20. [CrossRef]
  • Wang YQ, Yao MH. Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem 2009;20:982–91. [CrossRef]
  • Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase. Biochemistry 2005;44:8167–75. [CrossRef]
  • Qiao W, Peng Z, Wang Z, Wei J, Zhou A. Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biol Trace Elem Res 2009;131:133–42. [CrossRef]
  • Zheng HT, Zhou LN, Huang CJ, Hua X, Jian R, Su BH, Fang F. Selenium inhibits high glucose- and high insulin-induced adhesion molecule expression in vascular endothelial cells. Arch Med Res 2008;39:373– 9. [CrossRef]
  • Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 2007;147:217–23. [CrossRef]
  • Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 2009;55:1–23. [CrossRef]
  • Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and hypertension in the US Population. Circ Cardiovasc Qual Outcomes 2009;2:369–76. [CrossRef]
  • Thompson KH, Orvig C. Vanadium in diabetes:100 years from Phase 0 to Phase I. J Inorg Biochem 2006;100:1925–35. [CrossRef]
  • Wiernsperger N, Rapin J. Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2010;2:70. [CrossRef]
  • Mehdi MZ, Pandey SK, Theberge JF, Srivastava AK. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys 2006;44:73–81. [CrossRef]
  • Vardatsikos G, Mehdi MZ, Srivastava AK. Bis (maltolato)- oxovanadium (IV)-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses (review). Int J Mol Med 2009;24:303–9. [CrossRef]
  • Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E. Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 2001;17:55–66. [CrossRef]
  • Jacques-Camarena O, Gonzalez-Ortiz M, Martinez-Abundis E, Lopez- Madrueno JF, Medina-Santillan R. Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab 2008;53:195–8. [CrossRef]
  • Poucheret P, Verma S, Grynpas MD, McNeill JH. Vanadium and diabetes. Mol Cell Biochem 1998;188:73–80. [CrossRef]
  • Swaminathan S, Fonseca VA, Alam MG, Shah SV. The Role of Iron in Diabetes and Its Complications. Diabetes Care 2007;30:1926–33. [CrossRef]
  • Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem 2005;51:1201–5. [CrossRef]
  • Jiang R, Ma J, Ascherio A, Stampfer MJ, Willett WC, Hu FB. Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men: a prospective cohort study. Am J Clin Nutr 2004;79:70–5. [CrossRef]
  • Cooksey RC, Jouihan HA, Ajioka RS, Hazel MW, Jones DL, Kushner JP, McClain DA. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004;145:5305–12. [CrossRef]
  • Zheng Y, Li XK, Wang Y, Cai L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin 2008;32:135–45. [CrossRef]
  • Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P. Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diabetes Res Clin Pract 2001;52:77–84. [CrossRef]
  • Serdar MA, Bakir F, Hasimi A, Celik T, Akin O, Kenar L, et al. Trace and toxic element patterns in nonsmoker patients with noninsulin- dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries 2009;29:35–40. [CrossRef]
  • Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, et al. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J 1998;74:665–8. [CrossRef]
  • Flores CR, Puga MP, Wrobel K, Garay Sevilla ME, Wrobel K. Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res Clin Pract 2011;91:333–41. [CrossRef]
  • Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, et al. A newly synthetic chromium complex-chromium (D-phenylalanine) 3 activates AMP- activated protein kinase and stimulates glucose transport. Biochem Pharmacol 2009;77:1002–10. [CrossRef]
  • Guan X, Matte JJ, Ku PK, Snow JL, Burton JL, Trottier NL. High Chromium Yeast Supplementation Improves Glucose Tolerance in Pigs by Decreasing Hepatic Extraction of Insulin. J Nutr 2000;130:1274–9. [CrossRef]
  • Basaki M, Saeb M, Nazifi S, Shamsaei H. Zinc, Copper, Iron, and Chromium Concentrations in Young Patients with Type 2 Diabetes Mellitus. Biol Trace Elem Res 2012;148:161–4. [CrossRef]
  • Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 2008;122:1–18. [CrossRef]
  • Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U. S. adults. Diabetes Care 2007;30:829–34. [CrossRef]
  • Smith DM, Pickering RM, Lewith GT. A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM 2008;101:351–8. [CrossRef]
  • Ashraf AP, Eason NB, Kabagambe EK, Haritha J, Meleth S, McCormick KL. Dietary iron intake in the first 4 months of infancy and the development of type 1 diabetes: a pilot study. Diabetol Metab Syndr 2010;2:58. [CrossRef]
  • Forouhi NG, Harding AH, Allison M, Sandhu MS, Welch A, Luben R, et al. Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study. Diabetologia 2007;50:949–56. [CrossRef]
  • Montonen J, Boeing H, Steffen A, Lehmann R, Fritsche A, Joost HG, et al. Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 2012;55:2613–21. [CrossRef]
  • Bo S, Menato G, Villois P, Gambino R, Cassader M, Cotrino I, Cavallo-Perin P. Iron supplementation and gestational diabetes in midpregnancy. Am J Obstet Gynecol 2009;201:158.e1–6. [CrossRef]
  • Bowers K, Yeung E, Williams MA, Qi L, Tobias DK, Hu FB, Zhang C. A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care 2011;34:1557–63. [CrossRef]
  • Qiu C, Zhang C, Gelaye B, Enquobahrie DA, Frederick IO, Williams MA. Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care 2011;34:1564–9. [CrossRef]
  • Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta 2009;1790:671–81. [CrossRef]
  • Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem 2005;12:2753–63. [CrossRef]
  • Cooper GJ, Phillips AR, Choong SY, Leonard BL, Crossman DJ, Brunton DH, et al. Regeneration of the heart in diabetes by selective copper chelation. Diabetes 2004;53:2501–8. [CrossRef]
  • Hamada Y, Nakashima E, Naruse K, Nakae M, Naiki M, Fujisawa H, et al. A copper chelating agent suppresses carbonyl stress in diabetic rat lenses. J Diabetes Complications 2005;19:328–34. [CrossRef]
  • Tanaka A, Kaneto H, Miyatsuka T, Yamamoto K, Yoshiuchi K, Yamasaki Y, et al. Role of copper ion in the pathogenesis of type 2 diabetes. Endocrine J 2009;56:699–706. https://www.jstage.jst.go.jp/article/ endocrj/56/5/56_K09E-051/_pdf
  • Zargar AH, Bashir MI, Masoodi SR, Laway BA, Wani AI, Khan AR, Dar FA. Copper, zinc and magnesium levels in type-1 diabetes mellitus. Saudi Med J 2002;23:539–42. http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.830.4185&rep=rep1&type=pdf

Eser Elementler ile Diabetes Mellitus Komplikasyonları Arasındaki İlişki

Year 2020, Issue: 4, 658 - 663, 01.12.2020

Abstract

Amaç: Glikoz metabolizmasında eser elementlerin çinko Zn , krom Cr , selenyum Se , demir Fe , bakır Cu ve vanadyum Va etkileri olduğu bilinmektedir. Bu çalışmanın amacı acil servise başvuran hastalarda eser element düzeyleri ile akut diabetes mellitus DM komplikasyonları arasındaki ilişkiyi tespit etmektir. Yöntemler: Bir üniversitesi hastanesi üçüncü basamak acil servisine 01 Ocak 2012 – 29 Şubat 2012 tarihleri arasında başvuran 18 yaş ve üzeri yeni DM tanısı konulan veya daha önceden DM tanısı olan hastalar aydınlatılmış onam alınarak çalışmaya dâhil edildi. Kontrol Grubu ise bilinen herhangi bir hastalığı ve ilaç kullanımı olmayan 18 yaş üstü sağlıklı bireylerden seçildi. Eser element düzeyleri ise atomik absorpsiyon spektrofotometrik yöntemle TQ X5 marka ICP-MS cihazı kullanılarak elde edildi. Eser element düzeyleri, hem DM ile sağlıklı kontrol grubu arasında hem de DM komplikasyonları olan hastalar ile sağlıklı kontrol grubu arasında karşılaştırıldı. Bulgular: Çalışmaya toplamda 249 124 kadın kişi alındı. 151 84 kadın kişi çalışma grubunu DM oluştururken 98’i 40 kadın kontrol grubunu oluşturdu. Acil servise başvuran diyabet hastalarının ölçülen eser element düzeyleri ile kontrol grubu karşılaştırıldığında ortalama değerlerde belirgin bir fark olmadığı tespit edildi p>0,05 . Akut diyabetik komplikasyonları olan diyabetik ketoasidoz, diyabetik ketoz ve hiperglisemi hastalar n=11 ile kontrol grubu karşılaştırıldığında da yine her iki grup arasında anlamlı fark bulunamadı p>0,05 . Sonuç: Yapılan araştırmalar eser elementlerin moleküler düzeyde glikoz metabolizmasındaki etkilerini göstermekle birlikte, çalışmamızda acil servise başvuran akut diyabetik komplikasyonları olan hastalarda bakılan eser element düzeylerinin Zn, Cr, Se, Fe, Cu ve Va sağlıklı bireylerle karşılaştırılması sonucunda aralarında anlamlı bir fark bulunamamıştır.

References

  • Murray R, Mayes PA, Rodwell VW, Granner DK. Harper’s Biochemistry 25th ed. Appleton & Lange; 2000.
  • Candilish DJE. Minerals. J Am Coll Nutr 2000;17:286–310. http:// www.nutrition-matters.co.uk/free_docs/tracelements.htm
  • Haase H, Overbeck S, Rink L. Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol 2008;43:394–408. [CrossRef]
  • Saper RB, Rash R. Zinc: an essential micronutrient. Am Fam Physician 2009;79:768–72. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2820120/
  • Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 1994;102:5–46. [CrossRef]
  • Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010;2010:453892. [CrossRef]
  • Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 2008;43:370–7. [CrossRef]
  • Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab 2003;29:579–85. [CrossRef]
  • Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr 1998;17:109– 15. [CrossRef]
  • Suliburska J, Bogdanski P, Pupek-Musialik D, Krejpcio Z. Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res 2011;139:137–50. [CrossRef]
  • Goldhaber SB. Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 2003;38:232–42. [CrossRef]
  • Wallach S. Clinical and biochemical aspects of chromium deficiency. J Am Coll Nutr 1985;4:107–20. [CrossRef]
  • Wang YQ, Yao MH. Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem 2009;20:982–91. [CrossRef]
  • Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase. Biochemistry 2005;44:8167–75. [CrossRef]
  • Qiao W, Peng Z, Wang Z, Wei J, Zhou A. Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biol Trace Elem Res 2009;131:133–42. [CrossRef]
  • Zheng HT, Zhou LN, Huang CJ, Hua X, Jian R, Su BH, Fang F. Selenium inhibits high glucose- and high insulin-induced adhesion molecule expression in vascular endothelial cells. Arch Med Res 2008;39:373– 9. [CrossRef]
  • Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 2007;147:217–23. [CrossRef]
  • Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 2009;55:1–23. [CrossRef]
  • Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and hypertension in the US Population. Circ Cardiovasc Qual Outcomes 2009;2:369–76. [CrossRef]
  • Thompson KH, Orvig C. Vanadium in diabetes:100 years from Phase 0 to Phase I. J Inorg Biochem 2006;100:1925–35. [CrossRef]
  • Wiernsperger N, Rapin J. Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2010;2:70. [CrossRef]
  • Mehdi MZ, Pandey SK, Theberge JF, Srivastava AK. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys 2006;44:73–81. [CrossRef]
  • Vardatsikos G, Mehdi MZ, Srivastava AK. Bis (maltolato)- oxovanadium (IV)-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses (review). Int J Mol Med 2009;24:303–9. [CrossRef]
  • Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E. Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 2001;17:55–66. [CrossRef]
  • Jacques-Camarena O, Gonzalez-Ortiz M, Martinez-Abundis E, Lopez- Madrueno JF, Medina-Santillan R. Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab 2008;53:195–8. [CrossRef]
  • Poucheret P, Verma S, Grynpas MD, McNeill JH. Vanadium and diabetes. Mol Cell Biochem 1998;188:73–80. [CrossRef]
  • Swaminathan S, Fonseca VA, Alam MG, Shah SV. The Role of Iron in Diabetes and Its Complications. Diabetes Care 2007;30:1926–33. [CrossRef]
  • Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem 2005;51:1201–5. [CrossRef]
  • Jiang R, Ma J, Ascherio A, Stampfer MJ, Willett WC, Hu FB. Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men: a prospective cohort study. Am J Clin Nutr 2004;79:70–5. [CrossRef]
  • Cooksey RC, Jouihan HA, Ajioka RS, Hazel MW, Jones DL, Kushner JP, McClain DA. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004;145:5305–12. [CrossRef]
  • Zheng Y, Li XK, Wang Y, Cai L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin 2008;32:135–45. [CrossRef]
  • Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P. Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diabetes Res Clin Pract 2001;52:77–84. [CrossRef]
  • Serdar MA, Bakir F, Hasimi A, Celik T, Akin O, Kenar L, et al. Trace and toxic element patterns in nonsmoker patients with noninsulin- dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries 2009;29:35–40. [CrossRef]
  • Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, et al. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J 1998;74:665–8. [CrossRef]
  • Flores CR, Puga MP, Wrobel K, Garay Sevilla ME, Wrobel K. Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res Clin Pract 2011;91:333–41. [CrossRef]
  • Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, et al. A newly synthetic chromium complex-chromium (D-phenylalanine) 3 activates AMP- activated protein kinase and stimulates glucose transport. Biochem Pharmacol 2009;77:1002–10. [CrossRef]
  • Guan X, Matte JJ, Ku PK, Snow JL, Burton JL, Trottier NL. High Chromium Yeast Supplementation Improves Glucose Tolerance in Pigs by Decreasing Hepatic Extraction of Insulin. J Nutr 2000;130:1274–9. [CrossRef]
  • Basaki M, Saeb M, Nazifi S, Shamsaei H. Zinc, Copper, Iron, and Chromium Concentrations in Young Patients with Type 2 Diabetes Mellitus. Biol Trace Elem Res 2012;148:161–4. [CrossRef]
  • Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 2008;122:1–18. [CrossRef]
  • Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U. S. adults. Diabetes Care 2007;30:829–34. [CrossRef]
  • Smith DM, Pickering RM, Lewith GT. A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM 2008;101:351–8. [CrossRef]
  • Ashraf AP, Eason NB, Kabagambe EK, Haritha J, Meleth S, McCormick KL. Dietary iron intake in the first 4 months of infancy and the development of type 1 diabetes: a pilot study. Diabetol Metab Syndr 2010;2:58. [CrossRef]
  • Forouhi NG, Harding AH, Allison M, Sandhu MS, Welch A, Luben R, et al. Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study. Diabetologia 2007;50:949–56. [CrossRef]
  • Montonen J, Boeing H, Steffen A, Lehmann R, Fritsche A, Joost HG, et al. Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 2012;55:2613–21. [CrossRef]
  • Bo S, Menato G, Villois P, Gambino R, Cassader M, Cotrino I, Cavallo-Perin P. Iron supplementation and gestational diabetes in midpregnancy. Am J Obstet Gynecol 2009;201:158.e1–6. [CrossRef]
  • Bowers K, Yeung E, Williams MA, Qi L, Tobias DK, Hu FB, Zhang C. A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care 2011;34:1557–63. [CrossRef]
  • Qiu C, Zhang C, Gelaye B, Enquobahrie DA, Frederick IO, Williams MA. Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care 2011;34:1564–9. [CrossRef]
  • Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta 2009;1790:671–81. [CrossRef]
  • Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem 2005;12:2753–63. [CrossRef]
  • Cooper GJ, Phillips AR, Choong SY, Leonard BL, Crossman DJ, Brunton DH, et al. Regeneration of the heart in diabetes by selective copper chelation. Diabetes 2004;53:2501–8. [CrossRef]
  • Hamada Y, Nakashima E, Naruse K, Nakae M, Naiki M, Fujisawa H, et al. A copper chelating agent suppresses carbonyl stress in diabetic rat lenses. J Diabetes Complications 2005;19:328–34. [CrossRef]
  • Tanaka A, Kaneto H, Miyatsuka T, Yamamoto K, Yoshiuchi K, Yamasaki Y, et al. Role of copper ion in the pathogenesis of type 2 diabetes. Endocrine J 2009;56:699–706. https://www.jstage.jst.go.jp/article/ endocrj/56/5/56_K09E-051/_pdf
  • Zargar AH, Bashir MI, Masoodi SR, Laway BA, Wani AI, Khan AR, Dar FA. Copper, zinc and magnesium levels in type-1 diabetes mellitus. Saudi Med J 2002;23:539–42. http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.830.4185&rep=rep1&type=pdf
There are 53 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mustafa Çağrı Sayılır

Bülent Erbil

Mehmet Ali Aslaner

Mehmet Mahir Özmen

Publication Date December 1, 2020
Published in Issue Year 2020Issue: 4

Cite

EndNote Sayılır MÇ, Erbil B, Aslaner MA, Özmen MM (December 1, 2020) Eser Elementler ile Diabetes Mellitus Komplikasyonları Arasındaki İlişki. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 4 658–663.