Research Article
BibTex RIS Cite

In Silico Studies and In Vitro Microsomal Metabolism of Potent MetAP2 Inhibitor and In Vivo Tumor Suppressor for Prostate Cancer: A Thioether-Triazole Hybrid

Year 2023, Volume: 14 Issue: 1, 10 - 23, 01.01.2023
https://doi.org/10.31067/acusaglik.1210129

Abstract

Background/aim: The in-vitro microsomal metabolism of (S)-3-((2,4,6-trimethylphenyl)thio)-4-(4-fluorophenyl)-5-(1-(6-methoxynaphtalene-2-yl)ethyl)-4H-1,2,4-triazole (SGK636), an anticancer drug candidate was studied using pig microsomal preparations fortified with NADPH to identify the potential S-oxidation and S-dealkylation metabolites.
Materials and methods: In the present study, the sulfoxide metabolite was synthesized, purified and characterized by chromatographic and spectroscopic methods. SGK636, the S-oxidation and S-dealkylation metabolites were then separated by a reversed phase LC-MS, with UV detection and with an HP-TLC system. The results from the in-vitro microsomal metabolic experiments showed that SGK636 produced the corresponding S-oxidation metabolite (sulfoxide) which was observed by LC-MS, LC-MS/MS and HP-TLC with the identical Rt and Rfx100 values and UV/MS spectra in comparison with the authentic compounds, but no any S-dealkylation metabolite was detected.
Results: The present results were proved with molecular docking and molecular dynamic studies. Since sulfoxidation process can be reversible and it may partly explain the low amount of sulfoxide metabolite in our experiment, we also incubated the sulphoxide. No conversion back to the substrate (SGK636) was observed, but it produced the corresponding sulphone metabolite. In order to establish if SGK636 is autooxidized, the substrate was also incubated in buffer under standard incubation conditions, but no any autooxidation was observed into the corresponding sulfoxide. We also did a stability work for SGK636-SO (sulfoxide) in buffer to see any possible autooxidation to sulphone or reduction back to SGK636. No conversion was observed in either way. The substrate seems to be stable to metabolic reactions and to autooxidation which could be an advantage in terms of its pharmacological activity.
Conclusion: The present metabolic and study indicates that SGK 636 underwent S-oxidation. In order to identify the responsible oxydative enzyme, molecular docking and molecular dynamic studies were performed. CYP3A4 was found to be responsible enzyme for S-oxidation.

Supporting Institution

TUBITAK

Project Number

215S009

Thanks

The synthesis and confirmation SGK636 and (S)-Naproxen triazole were supported by a grant of TUBITAK (Project number: 215S009). (+) (S)-Naproxen, was obtained from Deva Ilaç San. Tic. A. S. , Turkey. The pig livers were donated by Acibadem University, Animal Laboratory Centre from the Project by Dr. Mehmet Emin Aksoy; laparoscopic and robotic surgery course, with the 2021-01 ethical approval number. The liver tissue was obtained from the euthanized pig at the end of course. Authors are gratefull to Chemist Ummet Melikoğlu (Acıbadem LABMED employee) for performing LC-MS/MS analyses for the compounds.

References

  • 1. Jokanovic´, M. Biotransformation of organophosphorus compounds. Toxicology 2001, 166, 139–160. https://doi.org/10.1016/s0300-483x(01)00463-2
  • 2. Damani, L. A., Thioethers, thiols, dithioic acids and disulphides: Phase I reactions In Sulphur-Containing Drugs and related Organic Compounds. Chemistry, Biochemistry and Toxicology, Damani, L. A., Ed. Ellis Horwood Limited: 1989; Vol. 1, pp 131-146. (Doi number is not applicable)
  • 3. Ziegler, D. M., S-Oxygenases, I: Chemistry and Biochemistry In Sulphur-Containing Drugs and related Organic Compounds. Chemistry, Biochemistry and Toxicology. Part A, Ellis Horwood Limited: 1989; Vol. 2, pp 53-66. Doi number is not applicable)
  • 4. Mitchard, R. L. M. a. J. A. B., H2 receptor antagonists. In Sulphur-Containing Drugs and related Organic Compounds. Chemistry, Biochemistry and Toxicology, 1989, pp 54-87. (Doi number is not applicable)
  • 5. Rydberg, P., Ryde, U., Olsen, L., Sulfoxide, Sulfur, and Nitrogen Oxidation and Dealkylation by Cytochrome P450. J Chem Theory Comput 2008, 4 (8), 1369-77. https://doi.org/ 10.1021/ct800101v
  • 6. Xie, G., Cheng, K. W., Huang, L., Rigas, B., The in vitro metabolism of phospho-sulindac amide, a novel potential anticancer agent. Biochem Pharmacol 2014, 91 (2), 249-55. https://doi.org/ 10.1016/j.bcp.2014.07.007
  • 7. Gurpinar, E., Grizzle, W. E., Piazza, G. A., COX-Independent Mechanisms of Cancer Chemoprevention by Anti-Inflammatory Drugs. Front Oncol 2013, 3, 181. https://doi.org/ 10.3389/fonc.2013.00181
  • 8. Li, C., Zhang, L., Zhang, C., Hirao, H., Wu, W., Shaik, S. Which Oxidant Is Really Responsible for Sulfur Oxidation by Cytochrome P450?. Angew. Chem. Int. Ed. 2007, 46, 8168–8170. https://doi.org/ 10.1002/anie.200702867
  • 9. DuBois, R. N.; Giardiello, F. M.; Smalley, W. E., Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin North Am 1996, 25 (4), 773-91. https://doi.org/ 10.1016/s0889-8553(05)70274-0
  • 10. Srinivas, S.; Feldman, D., A phase II trial of calcitriol and naproxen in recurrent prostate cancer. Anticancer Res 2009, 29 (9), 3605-10. PMID: 19667155
  • 11. Lubet, R. A.; Steele, V. E.; Juliana, M. M.; Grubbs, C. J., Screening agents for preventive efficacy in a bladder cancer model: study design, end points, and gefitinib and naproxen efficacy. J Urol 2010, 183 (4), 1598-603. https://doi.org/ 10.1016/j.juro.2009.12.001
  • 12. Kim, M. S.; Kim, J. E.; Lim, D. Y.; Huang, Z.; Chen, H.; Langfald, A.; Lubet, R. A.; Grubbs, C. J.; Dong, Z.; Bode, A. M., Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K. Cancer Prev Res (Phila) 2014, 7 (2), 236-45. https://doi.org/ 10.1158/1940-6207.CAPR-13-0288
  • 13. Han, M. I.; Kucukguzel, S. G., Anticancer and Antimicrobial Activities of Naproxen and Naproxen Derivatives. Mini Rev Med Chem 2020, 20 (13), 1300-1310. https://doi.org/ 10.2174/1389557520666200505124922
  • 14. Han, M. İ. B., H. ; Cumaoğlu, A.; Küçükgüzel, Ş. G. , Synthesis and characterization of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-Naproxen as anticancer agents. Marmara Pharm. J (now J. Res. Pharm.), 2015, 22 (4), 559-569. https://doi.org/ 10.12991/jrp.2018.98
  • 15. Han, M. I.; Bekci, H.; Uba, A. I.; Yildirim, Y.; Karasulu, E.; Cumaoglu, A.; Karasulu, H. Y.; Yelekci, K.; Yilmaz, O.; Kucukguzel, S. G., Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch Pharm (Weinheim) 2019, 352 (6), e1800365. https://doi.org/ 10.1002/ardp.201800365
  • 16. Birgul, K.; Yildirim, Y.; Karasulu, H. Y.; Karasulu, E.; Uba, A. I.; Yelekci, K.; Bekci, H.; Cumaoglu, A.; Kabasakal, L.; Yilmaz, O.; Kucukguzel, S. G., Synthesis, molecular modeling, in vivo study and anticancer activity against prostate cancer of (+) (S)-naproxen derivatives. Eur J Med Chem 2020, 208, 112841. https://doi.org/ 10.1016/j.ejmech.2020.112841
  • 17. Han, M. I.; Atalay, P.; Tunc, C. U.; Unal, G.; Dayan, S.; Aydin, O.; Kucukguzel, S. G., Design and synthesis of novel (S)-Naproxen hydrazide-hydrazones as potent VEGFR-2 inhibitors and their evaluation in vitro/in vivo breast cancer models. Bioorg Med Chem 2021, 37, 116097. https://doi.org/ 10.1016/j.bmc.2021.116097
  • 18. Birgül, K. U., A.I.; Çuhadar, O.;, Koçyiğit, S.; Tiryaki, S.; Mega, T.P.; Orun, O.;, Telci, D.; Yılmaz, Ö.; Yelekçi, K.; Küçükgüzel, Ş.G. , Synthesis and Molecular Modeling of MetAP2 of Thiosemicarbazides, 1,2,4-triazoles, thioethers derived from (S)-Naproxen as Possible Breast Cancer Agents. Journal of Molecular Structure 2022, 132739. https://doi.org/ 10.1016/j.molstruc.2022.132739
  • 19. Han, M. İ., Tunç, C.Ü. Atalay,, P.; Erdoğan, Ö.; Ünal, G.; Bozkurt, M.; Aydın, Ö.; Çevik, Ö.; Küçükgüzel, Ş.G. . , Synthesis, characterization, in vitro and in vivo anticancer activity studies of new (S)-Naproxen thiosemicarbazide/1,2,4-triazole derivatives. New J. Chemistry 2022, in press. https://doi.org/ 10.1039/D1NJ05899A
  • 20. Deb, J.; Majumder, J.; Bhattacharyya, S.; Jana, S. S., A novel naproxen derivative capable of displaying anti-cancer and anti-migratory properties against human breast cancer cells. BMC Cancer 2014, 14, 567. https://doi.org/ 10.1186/1471-2407-14-567
  • 21. Kucukguzel, I.; Kucukguzel, S. G.; Rollas, S.; Kiraz, M., Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg Med Chem Lett 2001, 11 (13), 1703-7. https://doi.org/ 10.1016/s0960-894x(01)00283-9
  • 22. Kucukguzel, I.; Guniz Kucukguzel, S.; Rollas, S.; Otuk-Sanis, G.; Ozdemir, O.; Bayrak, I.; Altug, T.; Stables, J. P., Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4-aminophenyl)-4H-1,2,4-triazole derivatives and their anticonvulsant activity. Farmaco 2004, 59 (11), 893-901. https://doi.org/ 10.1016/j.farmac.2004.07.005
  • 23. Kucukguzel, S. G.; Kucukguzel, I.; Tatar, E.; Rollas, S.; Sahin, F.; Gulluce, M.; De Clercq, E.; Kabasakal, L., Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents. Eur J Med Chem 2007, 42 (7), 893-901. https://doi.org/ 10.1016/j.ejmech.2006.12.038
  • 24. Kucukguzel, I.; Tatar, E.; Kucukguzel, S. G.; Rollas, S.; De Clercq, E., Synthesis of some novel thiourea derivatives obtained from 5-((4-aminophenoxy)methyl)-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur J Med Chem 2008, 43 (2), 381-92. https://doi.org/ 10.1016/j.ejmech.2007.04.010
  • 25. Kucukguzel, S. G.; Cikla-Suzgun, P., Recent advances bioactive 1,2,4-triazole-3-thiones. Eur J Med Chem 2015, 97, 830-70. https://doi.org/ 10.1016/j.ejmech.2014.11.033
  • 26. Cikla-Suzgun, P.; Kaushik-Basu, N.; Basu, A.; Arora, P.; Talele, T. T.; Durmaz, I.; Cetin-Atalay, R.; Kucukguzel, S. G., Anti-cancer and anti-hepatitis C virus NS5B polymerase activity of etodolac 1,2,4-triazoles. J Enzyme Inhib Med Chem 2015, 30 (5), 778-85. https://doi.org/ 10.3109/14756366.2014.971780
  • 27. Coşkun, G. P. Djikic., T.; Hayal, T.B.; Türkel, N.; Yelekçi, K.; Şahin, F.; Küçükgüzel, Ş. G. , Synthesis, Molecular Docking and Anticancer Activity of Diflunisal Derivatives as Cyclooxygenase Enzyme Inhibitors. Molecules 2018, 23, 1969. https://doi.org/ 10.3390/molecules23081969
  • 28. Coşkun, G. P. D., T.; Kalaycı, S.; Yelekçi, K.; Şahin, F.; Küçükgüzel, Ş.G. , Synthesis, Molecular Modelling and antibacterial activity against Helicobacter pylori of novel diflunisal derivatives as urease enzyme inhibitors. Letters in Drug Design and Discovery 2019, 16 (4), 392-400. https://doi.org/10.2174/1570180815666180627130208
  • 29. Cikla-Suzgun, P.; Kucukguzel, S. G., Recent Progress on Apoptotic Activity of Triazoles. Curr Drug Targets 2021, 22 (16), 1844-1900. https://doi.org/ 10.2174/1389450122666210208181128
  • 30. Han, M. I.; Ince, U.; Gunduz, M. G.; Kucukguzel, S. G., Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of New Thiosemicarbazide-Triazole Hybrid Derivatives of (S)-Naproxen. Chem Biodivers 2022, e202100900. https://doi.org/ 10.1002/cbdv.202100900
  • 31. Coruh, I.; Cevik, O.; Yelekci, K.; Djikic, T.; Kucukguzel, S. G., Synthesis, anticancer activity, and molecular modeling of etodolac-thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch Pharm (Weinheim) 2018, 351 (3-4), e1700195. https://doi.org/ 10.1002/ardp.201700195
  • 32. Yilmaz, O.; Bayer, B.; Bekci, H.; Uba, A. I.; Cumaoglu, A.; Yelekci, K.; Kucukguzel, S. G., Synthesis, Anticancer Activity on Prostate Cancer Cell Lines and Molecular Modeling Studies of Flurbiprofen-Thioether Derivatives as Potential Target of MetAP (Type II). Med Chem 2020, 16 (6), 735-749. https://doi.org/ 10.2174/1573406415666190613162322
  • 33. Han, M. I.; Kucukguzel, S. G., Thioethers: An Overview. Curr Drug Targets 2022, 23 (2), 170-219. https://doi.org/ 10.2174/1389450122666210614121237
  • 34. Kaymakcioglu, B.; Oruc, E.; Ulgen, M.; Rollas, S., The in vitro hepatic microsomal metabolism of 3,5-dimethyl-4-(phenylazo)-(1H)-pyrazole in rats. Drug Metabol Drug Interact 1999, 15 (2-3), 107-14. https://doi.org/ 10.1515/dmdi.1999.15.2-3.107
  • 35. Komurcu, S. G.; Rollas, S.; Ulgen, M.; Gorrod, J. W.; Cevikbas, A., Evaluation of some arylhydrazones of p-aminobenzoic acid hydrazide as antimicrobial agents and their in vitro hepatic microsomal metabolism. Boll Chim Farm 1995, 134 (7), 375-9. PMID: 7546542
  • 36. Kucukguzel, S. G.; Kucukguzel, I.; Ulgen, M., Metabolic and chemical studies on N-(4-chlorobenzyl)-N'-benzoylhydrazine. Farmaco 2000, 55 (9-10), 624-30. https://doi.org/ 10.1016/s0014-827x(00)00077-x
  • 37. Schenkman, J. B.; Cinti, D. L., Preparation of microsomes with calcium. Methods Enzymol 1978, 52, 83-9. https://doi.org/ 10.1016/s0076-6879(78)52008-9
  • 38. Ulgen, M., Techniques in in vitro oxidative microsomal phase I drug metabolism. J.Pharm.Univ.Mar 1993, 9 (2), 165-185. Doi is not available
  • 39. Durmaz, S., Evren, A.E., Saglik, B.N., Yurttas, L., Tay, N.F. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives, Arch Pharm (Weinheim), 2022, e2200294. https://doi.org/10.1002/ardp.202200294
  • 40. Evren, A.E., Nuha, D., Dawbaa, S., Saglik, B.N., Yurttas, L. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors, Eur. J. Med. Chem. 2022, 229, 114097. https://doi.org/10.1016/j.ejmech.2021.114097
  • 41. Abdelwahab, N.S., Elshemy, H.A.H. & Farid, N.F. Determination of flutamide and two major metabolites using HPLC–DAD and HPTLC methods. Chemistry Central Journal, 2018, 12, 4. https://doi.org/ 10.1186/s13065-018-0372y
  • 42. Leoni, C., Buratti, F.M., Testai, E. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion. Toxicology and Applied Pharmacology, 2008, 233, 343–352. https://doi.org/ 10.1016/j.taap.2008.09.004
  • 43. Rawden, H.C., Kokwaro, G.O., Ward, S.A., Edwards, G. Relative contribution of cytochromes P-450 and favin-containing monoxygenases to the metabolism of albendazole by human liver microsomes. J Clin Pharmacol, 2000, 49, 313-322 https://doi.org/ 10.1046/j.1365-2125.2000.00170.x
  • 44. Elena Doran, E., Whittington, F.M., Wood, J.D., McGivan, J.D. Characterisation of androstenone metabolism in pig liver microsomes. Chemico-Biological Interactions, 2004, 147, 141–149. https://doi.org/ 10.1016/j.cbi.2003.12.002
  • 45. Matal, J., Tunkova, A., Siller, M., Anzenbacherova, E., Anzenbacher, P. Isolation of two cytochrome P450 forms, CYP2A19 and CYP1A, from pig liver microsomes. J vet.Pharmacol Therap, 2009, 32, 470–476. https://doi.org/10.1111/j.1365-2885.2009.01076.x
  • 46. Lokwani, D.K., Sarkate, A.P., Karnik, K.S., Nikalje, A.P.G., Seijas, J.A. Structure-Based Site of Metabolism (SOM) Prediction of Ligand for CYP3A4 Enzyme: Comparison of Glide XP and Induced Fit Docking (IFD), Molecules, 2020, 25. https://doi.org/10.3390/molecules25071622
  • 47. Kaur, P., Chamberlin, A.R., Poulos, T.L. Sevrioukova, I.F. Structure-Based Inhibitor Design for Evaluation of a CYP3A4 Pharmacophore Model, J Med Chem, 2016, 59, 4210-4220. https://doi.org/10.1021/acs.jmedchem.5b01146
  • 48. Turan, N., Yucel, A.E., Evren, Kandemir, U., Can, O.D. Antidepressant-like effect of tofisopam in mice: A behavioural, molecular docking and MD simulation study, J Psychopharmacol, 2022, 2698811221095528. https://doi.org/10.1177/02698811221095528
  • 49. Nuha, D. Evren, A.E., Kapusiz, Ö., Gül, Ü.D., Gundogdu-Karaburun, N., Karaburun, A.Ç., Berber, H. Design, synthesis, and antimicrobial activity of novel coumarin derivatives: An in-silico and in-vitro study, J Mol Struct, 2022, 134166. https://doi.org/10.1016/j.molstruc.2022.134166
Year 2023, Volume: 14 Issue: 1, 10 - 23, 01.01.2023
https://doi.org/10.31067/acusaglik.1210129

Abstract

Project Number

215S009

References

  • 1. Jokanovic´, M. Biotransformation of organophosphorus compounds. Toxicology 2001, 166, 139–160. https://doi.org/10.1016/s0300-483x(01)00463-2
  • 2. Damani, L. A., Thioethers, thiols, dithioic acids and disulphides: Phase I reactions In Sulphur-Containing Drugs and related Organic Compounds. Chemistry, Biochemistry and Toxicology, Damani, L. A., Ed. Ellis Horwood Limited: 1989; Vol. 1, pp 131-146. (Doi number is not applicable)
  • 3. Ziegler, D. M., S-Oxygenases, I: Chemistry and Biochemistry In Sulphur-Containing Drugs and related Organic Compounds. Chemistry, Biochemistry and Toxicology. Part A, Ellis Horwood Limited: 1989; Vol. 2, pp 53-66. Doi number is not applicable)
  • 4. Mitchard, R. L. M. a. J. A. B., H2 receptor antagonists. In Sulphur-Containing Drugs and related Organic Compounds. Chemistry, Biochemistry and Toxicology, 1989, pp 54-87. (Doi number is not applicable)
  • 5. Rydberg, P., Ryde, U., Olsen, L., Sulfoxide, Sulfur, and Nitrogen Oxidation and Dealkylation by Cytochrome P450. J Chem Theory Comput 2008, 4 (8), 1369-77. https://doi.org/ 10.1021/ct800101v
  • 6. Xie, G., Cheng, K. W., Huang, L., Rigas, B., The in vitro metabolism of phospho-sulindac amide, a novel potential anticancer agent. Biochem Pharmacol 2014, 91 (2), 249-55. https://doi.org/ 10.1016/j.bcp.2014.07.007
  • 7. Gurpinar, E., Grizzle, W. E., Piazza, G. A., COX-Independent Mechanisms of Cancer Chemoprevention by Anti-Inflammatory Drugs. Front Oncol 2013, 3, 181. https://doi.org/ 10.3389/fonc.2013.00181
  • 8. Li, C., Zhang, L., Zhang, C., Hirao, H., Wu, W., Shaik, S. Which Oxidant Is Really Responsible for Sulfur Oxidation by Cytochrome P450?. Angew. Chem. Int. Ed. 2007, 46, 8168–8170. https://doi.org/ 10.1002/anie.200702867
  • 9. DuBois, R. N.; Giardiello, F. M.; Smalley, W. E., Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin North Am 1996, 25 (4), 773-91. https://doi.org/ 10.1016/s0889-8553(05)70274-0
  • 10. Srinivas, S.; Feldman, D., A phase II trial of calcitriol and naproxen in recurrent prostate cancer. Anticancer Res 2009, 29 (9), 3605-10. PMID: 19667155
  • 11. Lubet, R. A.; Steele, V. E.; Juliana, M. M.; Grubbs, C. J., Screening agents for preventive efficacy in a bladder cancer model: study design, end points, and gefitinib and naproxen efficacy. J Urol 2010, 183 (4), 1598-603. https://doi.org/ 10.1016/j.juro.2009.12.001
  • 12. Kim, M. S.; Kim, J. E.; Lim, D. Y.; Huang, Z.; Chen, H.; Langfald, A.; Lubet, R. A.; Grubbs, C. J.; Dong, Z.; Bode, A. M., Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K. Cancer Prev Res (Phila) 2014, 7 (2), 236-45. https://doi.org/ 10.1158/1940-6207.CAPR-13-0288
  • 13. Han, M. I.; Kucukguzel, S. G., Anticancer and Antimicrobial Activities of Naproxen and Naproxen Derivatives. Mini Rev Med Chem 2020, 20 (13), 1300-1310. https://doi.org/ 10.2174/1389557520666200505124922
  • 14. Han, M. İ. B., H. ; Cumaoğlu, A.; Küçükgüzel, Ş. G. , Synthesis and characterization of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-Naproxen as anticancer agents. Marmara Pharm. J (now J. Res. Pharm.), 2015, 22 (4), 559-569. https://doi.org/ 10.12991/jrp.2018.98
  • 15. Han, M. I.; Bekci, H.; Uba, A. I.; Yildirim, Y.; Karasulu, E.; Cumaoglu, A.; Karasulu, H. Y.; Yelekci, K.; Yilmaz, O.; Kucukguzel, S. G., Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch Pharm (Weinheim) 2019, 352 (6), e1800365. https://doi.org/ 10.1002/ardp.201800365
  • 16. Birgul, K.; Yildirim, Y.; Karasulu, H. Y.; Karasulu, E.; Uba, A. I.; Yelekci, K.; Bekci, H.; Cumaoglu, A.; Kabasakal, L.; Yilmaz, O.; Kucukguzel, S. G., Synthesis, molecular modeling, in vivo study and anticancer activity against prostate cancer of (+) (S)-naproxen derivatives. Eur J Med Chem 2020, 208, 112841. https://doi.org/ 10.1016/j.ejmech.2020.112841
  • 17. Han, M. I.; Atalay, P.; Tunc, C. U.; Unal, G.; Dayan, S.; Aydin, O.; Kucukguzel, S. G., Design and synthesis of novel (S)-Naproxen hydrazide-hydrazones as potent VEGFR-2 inhibitors and their evaluation in vitro/in vivo breast cancer models. Bioorg Med Chem 2021, 37, 116097. https://doi.org/ 10.1016/j.bmc.2021.116097
  • 18. Birgül, K. U., A.I.; Çuhadar, O.;, Koçyiğit, S.; Tiryaki, S.; Mega, T.P.; Orun, O.;, Telci, D.; Yılmaz, Ö.; Yelekçi, K.; Küçükgüzel, Ş.G. , Synthesis and Molecular Modeling of MetAP2 of Thiosemicarbazides, 1,2,4-triazoles, thioethers derived from (S)-Naproxen as Possible Breast Cancer Agents. Journal of Molecular Structure 2022, 132739. https://doi.org/ 10.1016/j.molstruc.2022.132739
  • 19. Han, M. İ., Tunç, C.Ü. Atalay,, P.; Erdoğan, Ö.; Ünal, G.; Bozkurt, M.; Aydın, Ö.; Çevik, Ö.; Küçükgüzel, Ş.G. . , Synthesis, characterization, in vitro and in vivo anticancer activity studies of new (S)-Naproxen thiosemicarbazide/1,2,4-triazole derivatives. New J. Chemistry 2022, in press. https://doi.org/ 10.1039/D1NJ05899A
  • 20. Deb, J.; Majumder, J.; Bhattacharyya, S.; Jana, S. S., A novel naproxen derivative capable of displaying anti-cancer and anti-migratory properties against human breast cancer cells. BMC Cancer 2014, 14, 567. https://doi.org/ 10.1186/1471-2407-14-567
  • 21. Kucukguzel, I.; Kucukguzel, S. G.; Rollas, S.; Kiraz, M., Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg Med Chem Lett 2001, 11 (13), 1703-7. https://doi.org/ 10.1016/s0960-894x(01)00283-9
  • 22. Kucukguzel, I.; Guniz Kucukguzel, S.; Rollas, S.; Otuk-Sanis, G.; Ozdemir, O.; Bayrak, I.; Altug, T.; Stables, J. P., Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4-aminophenyl)-4H-1,2,4-triazole derivatives and their anticonvulsant activity. Farmaco 2004, 59 (11), 893-901. https://doi.org/ 10.1016/j.farmac.2004.07.005
  • 23. Kucukguzel, S. G.; Kucukguzel, I.; Tatar, E.; Rollas, S.; Sahin, F.; Gulluce, M.; De Clercq, E.; Kabasakal, L., Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents. Eur J Med Chem 2007, 42 (7), 893-901. https://doi.org/ 10.1016/j.ejmech.2006.12.038
  • 24. Kucukguzel, I.; Tatar, E.; Kucukguzel, S. G.; Rollas, S.; De Clercq, E., Synthesis of some novel thiourea derivatives obtained from 5-((4-aminophenoxy)methyl)-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur J Med Chem 2008, 43 (2), 381-92. https://doi.org/ 10.1016/j.ejmech.2007.04.010
  • 25. Kucukguzel, S. G.; Cikla-Suzgun, P., Recent advances bioactive 1,2,4-triazole-3-thiones. Eur J Med Chem 2015, 97, 830-70. https://doi.org/ 10.1016/j.ejmech.2014.11.033
  • 26. Cikla-Suzgun, P.; Kaushik-Basu, N.; Basu, A.; Arora, P.; Talele, T. T.; Durmaz, I.; Cetin-Atalay, R.; Kucukguzel, S. G., Anti-cancer and anti-hepatitis C virus NS5B polymerase activity of etodolac 1,2,4-triazoles. J Enzyme Inhib Med Chem 2015, 30 (5), 778-85. https://doi.org/ 10.3109/14756366.2014.971780
  • 27. Coşkun, G. P. Djikic., T.; Hayal, T.B.; Türkel, N.; Yelekçi, K.; Şahin, F.; Küçükgüzel, Ş. G. , Synthesis, Molecular Docking and Anticancer Activity of Diflunisal Derivatives as Cyclooxygenase Enzyme Inhibitors. Molecules 2018, 23, 1969. https://doi.org/ 10.3390/molecules23081969
  • 28. Coşkun, G. P. D., T.; Kalaycı, S.; Yelekçi, K.; Şahin, F.; Küçükgüzel, Ş.G. , Synthesis, Molecular Modelling and antibacterial activity against Helicobacter pylori of novel diflunisal derivatives as urease enzyme inhibitors. Letters in Drug Design and Discovery 2019, 16 (4), 392-400. https://doi.org/10.2174/1570180815666180627130208
  • 29. Cikla-Suzgun, P.; Kucukguzel, S. G., Recent Progress on Apoptotic Activity of Triazoles. Curr Drug Targets 2021, 22 (16), 1844-1900. https://doi.org/ 10.2174/1389450122666210208181128
  • 30. Han, M. I.; Ince, U.; Gunduz, M. G.; Kucukguzel, S. G., Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of New Thiosemicarbazide-Triazole Hybrid Derivatives of (S)-Naproxen. Chem Biodivers 2022, e202100900. https://doi.org/ 10.1002/cbdv.202100900
  • 31. Coruh, I.; Cevik, O.; Yelekci, K.; Djikic, T.; Kucukguzel, S. G., Synthesis, anticancer activity, and molecular modeling of etodolac-thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch Pharm (Weinheim) 2018, 351 (3-4), e1700195. https://doi.org/ 10.1002/ardp.201700195
  • 32. Yilmaz, O.; Bayer, B.; Bekci, H.; Uba, A. I.; Cumaoglu, A.; Yelekci, K.; Kucukguzel, S. G., Synthesis, Anticancer Activity on Prostate Cancer Cell Lines and Molecular Modeling Studies of Flurbiprofen-Thioether Derivatives as Potential Target of MetAP (Type II). Med Chem 2020, 16 (6), 735-749. https://doi.org/ 10.2174/1573406415666190613162322
  • 33. Han, M. I.; Kucukguzel, S. G., Thioethers: An Overview. Curr Drug Targets 2022, 23 (2), 170-219. https://doi.org/ 10.2174/1389450122666210614121237
  • 34. Kaymakcioglu, B.; Oruc, E.; Ulgen, M.; Rollas, S., The in vitro hepatic microsomal metabolism of 3,5-dimethyl-4-(phenylazo)-(1H)-pyrazole in rats. Drug Metabol Drug Interact 1999, 15 (2-3), 107-14. https://doi.org/ 10.1515/dmdi.1999.15.2-3.107
  • 35. Komurcu, S. G.; Rollas, S.; Ulgen, M.; Gorrod, J. W.; Cevikbas, A., Evaluation of some arylhydrazones of p-aminobenzoic acid hydrazide as antimicrobial agents and their in vitro hepatic microsomal metabolism. Boll Chim Farm 1995, 134 (7), 375-9. PMID: 7546542
  • 36. Kucukguzel, S. G.; Kucukguzel, I.; Ulgen, M., Metabolic and chemical studies on N-(4-chlorobenzyl)-N'-benzoylhydrazine. Farmaco 2000, 55 (9-10), 624-30. https://doi.org/ 10.1016/s0014-827x(00)00077-x
  • 37. Schenkman, J. B.; Cinti, D. L., Preparation of microsomes with calcium. Methods Enzymol 1978, 52, 83-9. https://doi.org/ 10.1016/s0076-6879(78)52008-9
  • 38. Ulgen, M., Techniques in in vitro oxidative microsomal phase I drug metabolism. J.Pharm.Univ.Mar 1993, 9 (2), 165-185. Doi is not available
  • 39. Durmaz, S., Evren, A.E., Saglik, B.N., Yurttas, L., Tay, N.F. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives, Arch Pharm (Weinheim), 2022, e2200294. https://doi.org/10.1002/ardp.202200294
  • 40. Evren, A.E., Nuha, D., Dawbaa, S., Saglik, B.N., Yurttas, L. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors, Eur. J. Med. Chem. 2022, 229, 114097. https://doi.org/10.1016/j.ejmech.2021.114097
  • 41. Abdelwahab, N.S., Elshemy, H.A.H. & Farid, N.F. Determination of flutamide and two major metabolites using HPLC–DAD and HPTLC methods. Chemistry Central Journal, 2018, 12, 4. https://doi.org/ 10.1186/s13065-018-0372y
  • 42. Leoni, C., Buratti, F.M., Testai, E. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion. Toxicology and Applied Pharmacology, 2008, 233, 343–352. https://doi.org/ 10.1016/j.taap.2008.09.004
  • 43. Rawden, H.C., Kokwaro, G.O., Ward, S.A., Edwards, G. Relative contribution of cytochromes P-450 and favin-containing monoxygenases to the metabolism of albendazole by human liver microsomes. J Clin Pharmacol, 2000, 49, 313-322 https://doi.org/ 10.1046/j.1365-2125.2000.00170.x
  • 44. Elena Doran, E., Whittington, F.M., Wood, J.D., McGivan, J.D. Characterisation of androstenone metabolism in pig liver microsomes. Chemico-Biological Interactions, 2004, 147, 141–149. https://doi.org/ 10.1016/j.cbi.2003.12.002
  • 45. Matal, J., Tunkova, A., Siller, M., Anzenbacherova, E., Anzenbacher, P. Isolation of two cytochrome P450 forms, CYP2A19 and CYP1A, from pig liver microsomes. J vet.Pharmacol Therap, 2009, 32, 470–476. https://doi.org/10.1111/j.1365-2885.2009.01076.x
  • 46. Lokwani, D.K., Sarkate, A.P., Karnik, K.S., Nikalje, A.P.G., Seijas, J.A. Structure-Based Site of Metabolism (SOM) Prediction of Ligand for CYP3A4 Enzyme: Comparison of Glide XP and Induced Fit Docking (IFD), Molecules, 2020, 25. https://doi.org/10.3390/molecules25071622
  • 47. Kaur, P., Chamberlin, A.R., Poulos, T.L. Sevrioukova, I.F. Structure-Based Inhibitor Design for Evaluation of a CYP3A4 Pharmacophore Model, J Med Chem, 2016, 59, 4210-4220. https://doi.org/10.1021/acs.jmedchem.5b01146
  • 48. Turan, N., Yucel, A.E., Evren, Kandemir, U., Can, O.D. Antidepressant-like effect of tofisopam in mice: A behavioural, molecular docking and MD simulation study, J Psychopharmacol, 2022, 2698811221095528. https://doi.org/10.1177/02698811221095528
  • 49. Nuha, D. Evren, A.E., Kapusiz, Ö., Gül, Ü.D., Gundogdu-Karaburun, N., Karaburun, A.Ç., Berber, H. Design, synthesis, and antimicrobial activity of novel coumarin derivatives: An in-silico and in-vitro study, J Mol Struct, 2022, 134166. https://doi.org/10.1016/j.molstruc.2022.134166
There are 49 citations in total.

Details

Primary Language English
Subjects Endocrinology
Journal Section Research Article
Authors

Göknil Coşkun 0000-0001-5168-3866

Kaan Birgül 0000-0003-3963-4687

Asaf Evrim Evren 0000-0002-8651-826X

Ş. Güniz Küçükgüzel 0000-0001-9405-8905

Mert Ülgen 0000-0003-4913-4950

Project Number 215S009
Early Pub Date November 15, 2022
Publication Date January 1, 2023
Submission Date November 25, 2022
Published in Issue Year 2023Volume: 14 Issue: 1

Cite

EndNote Coşkun G, Birgül K, Evren AE, Küçükgüzel ŞG, Ülgen M (January 1, 2023) In Silico Studies and In Vitro Microsomal Metabolism of Potent MetAP2 Inhibitor and In Vivo Tumor Suppressor for Prostate Cancer: A Thioether-Triazole Hybrid. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 14 1 10–23.