Research Article
BibTex RIS Cite
Year 2023, Volume: 14 Issue: 2, 125 - 135, 17.03.2023
https://doi.org/10.31067/acusaglik.1195985

Abstract

References

  • Reference1 Klales AR. Sex estimation using pelvis morphology. In: Klales AR, ed. Sex Estimation of the Human Skeleton: Elsevier; 2020. p. 75-93.
  • Reference2 Akhlaghi M, Azizian A, Sadeghian MH, et al. Comparing the Accuracy of Morphometric and Morphological Criteria of Hip Bone in Gender Determination. IJMTFM. 2019;9:57-64.
  • Reference3 Gupta S and Arora K. Study of significance of total pelvic height and pelvic width in sex determination of human innominate bone in Gujarat region. GCSMC Journal of Medical Sciences. 2013;2:38-40.
  • Reference4 Tubbs RS. Pelvic Girdle And Lower Limb. In: Standring S, ed. Gray's Anatomy: The Anatomical Basis of Clinical Practice. 41. ed. Philadelphia USA: Elsevier; 2016. p. 1316-83.
  • Reference5 Kilmer K and Garvin H. Outline analysis of sex and population variation in greater sciatic notch and obturator foramen morphology with implications for sex estimation. Forensic Sci Int. 2020;314:110346-54.
  • Reference6 Caple J, Byrd J and Stephan CN. Elliptical Fourier analysis: fundamentals, applications, and value for forensic anthropology. J Forensic Leg Med. 2017;131:1675-90.
  • Reference7 Mnari W, Hmida B, Maatouk M, et al. Strangulated obturator hernia: a case report with literature review. Pan Afr. Med. 2019;32:144.
  • Reference8 Emre H, Mehmet E, Aydoğan B, et al. Anatomic transobturator tape (TOT) technique: clinical anatomic landmarks of obturator foramen on female cadavers. Anatomy. 2015;9:38-41.
  • Reference9 Singh R. Bony spurs projecting in the obturator foramen. Folia Morphol. 2012;71:125-7.
  • Reference10 Kausar Z, Bhat GM, Shahdad S, et al. Morphometry of the adult human dry hip bone in Kashmiri population. J Res Med Sci. 2018;6:3494-8.
  • Reference11 Iwata H and Ukai Y. SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 2002;93:384-5.
  • Reference12 Nawrocki SP, Latham KE, Gore T, et al. Using Elliptical Fourier Analysis to Interpret Complex Morphological Features in Global Populations. In: Latham KE, Bartelink EJ and Finnegan M, eds. New Perspectives in Forensic Human Skeletal Identification. e-book: Elsevier; 2018. p. 301-12.
  • Reference13 Kenan S, Stein S, Trasolini R, et al. Iatrogenic Obturator Hip Dislocation with Intrapelvic Migration. Case Rep Orthop. 2018:5072846.
  • Reference14 Pankaj A, Sharma M, Kochar V, et al. Neglected, locked, obturator type of inferior hip dislocation treated by total hip arthroplasty. Arch Orthop Trauma Surg. 2011;131:443-6.
  • Reference15 Shathviha PC, Babu KY and Mohanraj KG. Assessment of sexual differences in the bony pelvis by pelvimetry using simple morphometric parameters. Drug Invent. Today. 2018;10:1939-42.
  • Reference16 Basheer MSM, Tabhane M and Ksheersagar D. Sexual Dimorphism in Human Hip Bone-A Review. J Cont. Med A Dent. 2015;3:4-6.
  • Reference17 Singh I. Functional asymmetry in the lower limbs. Acta anatomica. 1970;77:131-8.
  • Reference18 Mcdowell JL, L'abbe EN and Kenyhercz MW. Nasal aperture shape evaluation between black and white South Africans. Forensic Sci Int. 2012;222:397(e.1–e.6).
  • Reference19 Gore T, Nawrockı SP, Langdon J, et al. The use of elliptical Fourier analysis on orbit shape in human skeletal remains. In: Lestrel PE, ed. Biological Shape Analysis-Proceedings Of The 3rd International Symposium. Japan: World Scientific; 2015. p. 242-65.
  • Reference20 Solomon LB, Howie DW and Henneberg M. The variability of the volume of os coxae and linear pelvic morphometry. Considerations for total hip arthroplasty. J Arthroplasty. 2014;29:769-76.
  • Reference21 Hohenberger GM, Schwarz AM, Weiglein AH, et al. Morphological side differences of the hemipelvis. J Anat Soc India. 2020;69:201-6.
  • Reference22 Bhosale YJ, Khushale KD and Shyamkishore K. Uncommon Parameters for Hip bone sexing. Natl J Integr Res Med. 2016;7:14-6.
  • Reference23 Jeyashree T, Sangeetha S and Premavathy D. Quantitative and qualitative morphometry of hip bone for determining sex. Drug Invent. Today. 2019;11:2590-2.
  • Reference24 Pullanna B, Bindhu S, Avadhani R, et al. Morphometry Of The Adult Human Dry Hip Bone In South Indıan Populatıon. Int J Anat Res. 2019;7:6178-82.
  • Reference25 Shah S, Zalawadia A, Ruparelia S, et al. Morphometric study of greater sciatic notch of dry human hip bone in Gujarat region. Nat J Integrated Res Med. 2011;2:27-30.
  • Reference26 Raut RS, Hosmani PB and Kulkarni P. Role of greater sciatic notch in sexing human hip bones. Int. j. recent trends sci. technol. 2013;7:119-23.
  • Reference27 Gomez-Valdes JA, Torres Ramirez G, Baez Molgado S, et al. Discriminant function analysis for sex assessment in pelvic girdle bones: sample from the contemporary Mexican population. J Forensic Sci. 2011;56:297-301.
  • Reference28 Sitek A, Fijalkowska M, Zadzinska E, et al. Biometric characteristics of the pelvis in female-to-male transsexuals. Arch Sex Behav. 2012;41:1303-13.
  • Reference29 Patriquin ML, Steyn M and Loth SR. Metric assessment of race from the pelvis in South Africans. Forensic Sci Int. 2002;127:104-13.
  • Reference30 Smrke D and Biščević M. Variation of Pelvic Diameters Due to Different Scanning Positions–The Experimental Study. Coll Antropol. 2007;31:661-6.
  • Reference31 Courtiol A, Ferdy JB, Godelle B, et al. Height and body mass influence on human body outlines: a quantitative approach using an elliptic Fourier analysis. AJPA. 2010;142:22-9.
  • Reference32 Schmittbuhl M, Le Minor J, Taroni F, et al. Sexual dimorphism of the human mandible: demonstration by elliptical Fourier analysis. J Forensic Leg Med. 2001;115:100-1.

Shape Analysis and Morphometric Evaluation of the Obturator Foramen in Dry Human Bones

Year 2023, Volume: 14 Issue: 2, 125 - 135, 17.03.2023
https://doi.org/10.31067/acusaglik.1195985

Abstract

Purpose: This study aims to analyze the shape and morphometric features of the obturator foramen (OF) in dry human bones.
Methods: Forty-six (Right:15, Left:31) dry human coxal bones were evaluated. Photographs of samples for morphometric measurements were taken using a transparent osteometric box (TOB) designed for this study. Horizontal and vertical diameters of OF were measured according to two different principles. Measurements were taken to determine the localization of OF on the coxal bone (hip bone) relative to the acetabulum, pubis, and ischium. Shape analysis (visual typing) of OF was performed with the conventional method. In order to examine the shape variations of the OF in more detail, quantitative shape analysis based on Elliptic Fourier Analysis was performed with the SHAPE software.
Results: A significant difference was observed between the diameter measurements obtained by the two methods (p<0,001). Six visual types were determined in the qualitative shape analysis (oval, ellipsoid, piriform, trapezoidal, triangular, and atypical). Researchers agreed on the shape types of 16 bones. Quantitative shape analysis revealed 77 principal components (PC). The first nine significant PC explained the variation in the shape of OF cumulatively by 92,61%.
Conclusion: The standard position, defined for the first time in this study, is recommended as an easy-to-reproduce position for dry bone measurements or radiological morphometric studies. The conventional shape analysis method (visual typing) is not capable of sufficient evidence-based discrimination. Therefore, examining the shape features of OF based on quantitative findings such as Elliptic Fourier Analysis may yield more accurate results.

References

  • Reference1 Klales AR. Sex estimation using pelvis morphology. In: Klales AR, ed. Sex Estimation of the Human Skeleton: Elsevier; 2020. p. 75-93.
  • Reference2 Akhlaghi M, Azizian A, Sadeghian MH, et al. Comparing the Accuracy of Morphometric and Morphological Criteria of Hip Bone in Gender Determination. IJMTFM. 2019;9:57-64.
  • Reference3 Gupta S and Arora K. Study of significance of total pelvic height and pelvic width in sex determination of human innominate bone in Gujarat region. GCSMC Journal of Medical Sciences. 2013;2:38-40.
  • Reference4 Tubbs RS. Pelvic Girdle And Lower Limb. In: Standring S, ed. Gray's Anatomy: The Anatomical Basis of Clinical Practice. 41. ed. Philadelphia USA: Elsevier; 2016. p. 1316-83.
  • Reference5 Kilmer K and Garvin H. Outline analysis of sex and population variation in greater sciatic notch and obturator foramen morphology with implications for sex estimation. Forensic Sci Int. 2020;314:110346-54.
  • Reference6 Caple J, Byrd J and Stephan CN. Elliptical Fourier analysis: fundamentals, applications, and value for forensic anthropology. J Forensic Leg Med. 2017;131:1675-90.
  • Reference7 Mnari W, Hmida B, Maatouk M, et al. Strangulated obturator hernia: a case report with literature review. Pan Afr. Med. 2019;32:144.
  • Reference8 Emre H, Mehmet E, Aydoğan B, et al. Anatomic transobturator tape (TOT) technique: clinical anatomic landmarks of obturator foramen on female cadavers. Anatomy. 2015;9:38-41.
  • Reference9 Singh R. Bony spurs projecting in the obturator foramen. Folia Morphol. 2012;71:125-7.
  • Reference10 Kausar Z, Bhat GM, Shahdad S, et al. Morphometry of the adult human dry hip bone in Kashmiri population. J Res Med Sci. 2018;6:3494-8.
  • Reference11 Iwata H and Ukai Y. SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 2002;93:384-5.
  • Reference12 Nawrocki SP, Latham KE, Gore T, et al. Using Elliptical Fourier Analysis to Interpret Complex Morphological Features in Global Populations. In: Latham KE, Bartelink EJ and Finnegan M, eds. New Perspectives in Forensic Human Skeletal Identification. e-book: Elsevier; 2018. p. 301-12.
  • Reference13 Kenan S, Stein S, Trasolini R, et al. Iatrogenic Obturator Hip Dislocation with Intrapelvic Migration. Case Rep Orthop. 2018:5072846.
  • Reference14 Pankaj A, Sharma M, Kochar V, et al. Neglected, locked, obturator type of inferior hip dislocation treated by total hip arthroplasty. Arch Orthop Trauma Surg. 2011;131:443-6.
  • Reference15 Shathviha PC, Babu KY and Mohanraj KG. Assessment of sexual differences in the bony pelvis by pelvimetry using simple morphometric parameters. Drug Invent. Today. 2018;10:1939-42.
  • Reference16 Basheer MSM, Tabhane M and Ksheersagar D. Sexual Dimorphism in Human Hip Bone-A Review. J Cont. Med A Dent. 2015;3:4-6.
  • Reference17 Singh I. Functional asymmetry in the lower limbs. Acta anatomica. 1970;77:131-8.
  • Reference18 Mcdowell JL, L'abbe EN and Kenyhercz MW. Nasal aperture shape evaluation between black and white South Africans. Forensic Sci Int. 2012;222:397(e.1–e.6).
  • Reference19 Gore T, Nawrockı SP, Langdon J, et al. The use of elliptical Fourier analysis on orbit shape in human skeletal remains. In: Lestrel PE, ed. Biological Shape Analysis-Proceedings Of The 3rd International Symposium. Japan: World Scientific; 2015. p. 242-65.
  • Reference20 Solomon LB, Howie DW and Henneberg M. The variability of the volume of os coxae and linear pelvic morphometry. Considerations for total hip arthroplasty. J Arthroplasty. 2014;29:769-76.
  • Reference21 Hohenberger GM, Schwarz AM, Weiglein AH, et al. Morphological side differences of the hemipelvis. J Anat Soc India. 2020;69:201-6.
  • Reference22 Bhosale YJ, Khushale KD and Shyamkishore K. Uncommon Parameters for Hip bone sexing. Natl J Integr Res Med. 2016;7:14-6.
  • Reference23 Jeyashree T, Sangeetha S and Premavathy D. Quantitative and qualitative morphometry of hip bone for determining sex. Drug Invent. Today. 2019;11:2590-2.
  • Reference24 Pullanna B, Bindhu S, Avadhani R, et al. Morphometry Of The Adult Human Dry Hip Bone In South Indıan Populatıon. Int J Anat Res. 2019;7:6178-82.
  • Reference25 Shah S, Zalawadia A, Ruparelia S, et al. Morphometric study of greater sciatic notch of dry human hip bone in Gujarat region. Nat J Integrated Res Med. 2011;2:27-30.
  • Reference26 Raut RS, Hosmani PB and Kulkarni P. Role of greater sciatic notch in sexing human hip bones. Int. j. recent trends sci. technol. 2013;7:119-23.
  • Reference27 Gomez-Valdes JA, Torres Ramirez G, Baez Molgado S, et al. Discriminant function analysis for sex assessment in pelvic girdle bones: sample from the contemporary Mexican population. J Forensic Sci. 2011;56:297-301.
  • Reference28 Sitek A, Fijalkowska M, Zadzinska E, et al. Biometric characteristics of the pelvis in female-to-male transsexuals. Arch Sex Behav. 2012;41:1303-13.
  • Reference29 Patriquin ML, Steyn M and Loth SR. Metric assessment of race from the pelvis in South Africans. Forensic Sci Int. 2002;127:104-13.
  • Reference30 Smrke D and Biščević M. Variation of Pelvic Diameters Due to Different Scanning Positions–The Experimental Study. Coll Antropol. 2007;31:661-6.
  • Reference31 Courtiol A, Ferdy JB, Godelle B, et al. Height and body mass influence on human body outlines: a quantitative approach using an elliptic Fourier analysis. AJPA. 2010;142:22-9.
  • Reference32 Schmittbuhl M, Le Minor J, Taroni F, et al. Sexual dimorphism of the human mandible: demonstration by elliptical Fourier analysis. J Forensic Leg Med. 2001;115:100-1.
There are 32 citations in total.

Details

Primary Language English
Subjects Anatomy
Journal Section Research Article
Authors

Kemal Emre Özen 0000-0002-9778-3325

Hüma Kaçar 0000-0003-4804-3678

Publication Date March 17, 2023
Submission Date October 31, 2022
Published in Issue Year 2023Volume: 14 Issue: 2

Cite

EndNote Özen KE, Kaçar H (March 1, 2023) Shape Analysis and Morphometric Evaluation of the Obturator Foramen in Dry Human Bones. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 14 2 125–135.