Research Article
BibTex RIS Cite
Year 2024, Volume: 2 Issue: 1, 1 - 5, 03.05.2024
https://doi.org/10.62425/rtpharma.1466682

Abstract

References

  • Liu, C., Li, N., Dai, G., Cavdar, O., & Fang, H. (2021). A narrative review of circular RNAs as potential biomarkers and therapeutic targets for cardiovascular diseases. Annals of Translational Medicine, 9(7).
  • Oboh, G., Ademosun, A. O., & Ogunsuyi, O. B. (2016). Quercetin and its role in chronic diseases. Drug discovery from mother nature, 377-387.
  • Batiha, G. E. S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., ... & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 9(3), 374.
  • Chang, X., Zhang, T., Meng, Q., Yan, P., Wang, X., Luo, D., ... & Ji, R. (2021). Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxidative Medicine and Cellular Longevity, 2021.
  • Hu, Y., Gui, Z., Zhou, Y., Xia, L., Lin, K., & Xu, Y. (2019). Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radical Biology and Medicine, 145, 146-160.
  • Li, H., & Zhang, Q. (2023). Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals, 16(9), 1201.
  • Aggarwal, K., Bansal, V., Mahmood, R., Kanagala, S. G., & Jain, R. (2023). Asthma and Cardiovascular Diseases: Uncovering Common Ground in Risk Factors and Pathogenesis. Cardiology in Review, 10-1097.
  • Zhang, W., Zheng, Y., Yan, F., Dong, M., & Ren, Y. (2023). Research progress of quercetin in cardiovascular disease. Frontiers in Cardiovascular Medicine, 10.
  • Yamagata, K. (2023). Onion quercetin inhibits vascular endothelial cell dysfunction and prevents hypertension. European Food Research and Technology, 1-13.
  • Yan, L., Vaghari-Tabari, M., Malakoti, F., Moein, S., Qujeq, D., Yousefi, B., & Asemi, Z. (2023). Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Critical reviews in food science and nutrition, 63(28), 9163-9186.
  • Papakyriakopoulou, P., Velidakis, N., Khattab, E., Valsami, G., Korakianitis, I., & Kadoglou, N. P. (2022). Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals, 15(8), 1019.
  • Bartekova, M., Čarnická, S., Pancza, D., Ondrejčáková, M., Breier, A., & Ravingerová, T. (2010). Acute treatment with polyphenol quercetin improves postischemic recovery of isolated perfused rat hearts after global ischemia. Canadian journal of physiology and pharmacology, 88(4), 465-471.
  • Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., & Shin, H. S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European journal of medicinal chemistry, 155, 889-904.
  • Yamagata, K., & Yamori, Y. (2020). Inhibition of endothelial dysfunction by dietary flavonoids and preventive effects against cardiovascular disease. Journal of Cardiovascular Pharmacology, 75(1), 1-9.
  • Guo, B., Chou, F., Huang, L., Yin, F., Fang, J., Wang, J. B., & Jia, Z. (2022). Recent insights into oxidative metabolism of quercetin: Catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Critical Reviews in Food Science and Nutrition, 1-28.
  • Wang, M. H., Li, L. Z., Sun, J. B., Wu, F. H., & Liang, J. Y. (2014). A new antioxidant flavone glycoside from Scutellaria baicalensis Georgi. Natural product research, 28(20), 1772-1776.
  • Alizadeh, S. R., & Ebrahimzadeh, M. A. (2022). Quercetin derivatives: Drug design, development, and biological activities, a review. European journal of medicinal chemistry, 229, 114068.
  • Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021.
  • UCSF Chimera--a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 2004 Oct;25(13):1605-12.
  • Totrov, M., & Abagyan, R. (2008). Flexible ligand docking to multiple receptor conformations: a practical alternative. Current opinion in structural biology, 18(2), 178-184. https://doi.org/10.1016/j.sbi.2008.01.004 .
  • Mustafa, U. S. T. A., GÜLLER, A., DEMİREL, S., KORKMAZ, G., & Zeynelabidin, K. U. R. T. (2023). New insights into tomato spotted wilt orthotospovirus (TSWV) infections in Türkiye: Molecular detection, phylogenetic analysis, and in silico docking study. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13245-13245. https://doi.org/10.15835/nbha51313245.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Res., 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956 .
  • PerkinElmer. (2023). ChemBioDraw Ultra 14. Retrieved from https://scistore.cambridgesoft.com/chembiodraw/, Access Date: 15.03.2024.
  • Protein Data Bank. (2023). PDB ID: 1ema. Retrieved from https://www.rcsb.org/structure/1ema, Access Date: 15.03.2024.
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research, 46(W1), W363-W367. https://doi.org/10.1093/nar/gky473 .
  • AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Trott O, Olson AJ. J Comput Chem. 2010 Jan 30;31(2):455-61.
  • Schrödinger, LLC. (2023). Support. Retrieved from https://pymol.org/2/support.html , Access Date: 15.03.2024.
  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic acids research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294.
  • Biovia Discovery Studio Visualizer v21.1.0.20298 (BIOVIA, Dassault Systèmes, San Diego, CA, USA).
  • Niranjan, V., et al., Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS. Plos one, 2023. 18(8): p. e0288264.
  • Gharaghani, S., T. Khayamian, and M. Ebrahimi, Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR and QSAR in Environmental Research, 2013. 24(9): p. 773-794.
  • Sargsyan, K., C. Grauffel, and C. Lim, How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of chemical theory and computation, 2017. 13(4): p. 1518-1524.
  • Elangovan, N.D., et al., Screening of potential drug for Alzheimer’s disease: A computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2021. 39(18): p. 7065-7079.
  • Saravanan, K., G. Hunday, and P. Kumaradhas, Binding and stability of indirubin-3-monoxime in the GSK3β enzyme: A molecular dynamics simulation and binding free energy study. Journal of Biomolecular Structure and Dynamics, 2019.
  • Shukla, R., N.S. Munjal, and T.R. Singh, Identification of novel small molecules against GSK3β for Alzheimer's disease using chemoinformatics approach. Journal of Molecular Graphics and Modelling, 2019. 91: p. 91-104.
  • Eskandarzadeh, M., et al., Inhibition of GSK_3β by Iridoid Glycosides of Snowberry (Symphoricarpos albus) Effective in the Treatment of Alzheimer’s Disease Using Computational Drug Design Methods. Frontiers in chemistry, 2021. 9: p. 709932.
  • Shadidizaji, A., Cinisli, K. T., Warda, M., Cicek, B., & Hacimuftoglu, A. (2024). Virtual insights into the quercetin-Melampsora lini-derived effector AvrM14 interaction: An In silico exploration of plant defense mechanisms. Physiological and Molecular Plant Pathology, 129, 102200.
  • Shadidizaji,, A., Çınar, B., Cinisli, K. T., Rezai. M., Sağsöz, M. E., Okkay, U., ... & Hacımüftüoğlu, A. (2023). In silico study of synthetic Bromophenol Compounds against Staphylococcus aeurus's target protein (DHFR) Enzyme. Recent Trends in Pharmacology, 1(2), 72-85.
  • Rad, P. M., Rahbarnia, L., Safary, A., ShadiDizaji, A., & Maani, Z. (2023). The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties. Probiotics and Antimicrobial Proteins, 1-11.
  • Matta, C. F., Hernández‐Trujillo, J., Tang, T. H., & Bader, R. F. (2003). Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chemistry–A European Journal, 9(9), 1940-1951.
  • Bayan, A. M., Mosawi, S. H., Fani, N., Behrad, M. S., Mehrpoor, A. J., Noori, M. Y., ... & Amirkhezi, F. (2023). Integrating molecular docking and molecular dynamics simulation studies on the affinity and interactions of piperine with β-lactamase class A enzymes. Journal of Molecular Structure, 1292, 136151.
  • Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2022). Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. Journal of Biomolecular Structure and Dynamics, 40(10), 4662-4681.
  • Guillermo Gormaz, J., Quintremil, S., & Rodrigo, R. (2015). Cardiovascular disease: a target for the pharmacological effects of quercetin. Current topics in medicinal chemistry, 15(17), 1735-1742.
  • Siegbahn, P. E. (2004). Hybrid DFT study of the mechanism of quercetin 2, 3-dioxygenase. Inorganic chemistry, 43(19), 5944-5953.
  • Ren, G., Chen, H., Zhang, M., Yang, N., Yang, H., Xu, C., ... & Zhao, D. (2020). Pharmacokinetics, tissue distribution and excretion study of Oroxylin A, Oroxylin A 7-O-glucuronide and Oroxylin A sodium sulfonate in rats after administration of Oroxylin A. Fitoterapia, 142, 104480.

Antitumoral Effect of Syringe Acid on DU-145 Prostate Cancer Cells

Year 2024, Volume: 2 Issue: 1, 1 - 5, 03.05.2024
https://doi.org/10.62425/rtpharma.1466682

Abstract

Amaç: Prostat kanseri (PC), dünya çapında erkeklerde kanserden ölümlerin en yaygın nedenlerinden biridir ve PC'yi tedavi etmek için yeni ilaçlar halen geliştirilmektedir. Şırınga asidi (SA), çeşitli tümörlerde antiinflamatuar ve metabolik düzenleyici etkiler ve antitümör aktiviteleri sergileyen bir polifenolik bileşiktir. Bu çalışma, SA'nın DU-145 hücreleri üzerindeki antiproliferatif ve antitümör aktivitelerini araştırmayı amaçladı. Yöntemler: SA'nın antiproliferatif etkisini belirlemek için MTT, antioksidan-oksidan etkilerini belirlemek için SOD-MDA analizleri kullanıldı. Bulgular: SA, in vitro olarak DU-145 hücre proliferasyonunu önemli ölçüde baskıladı. Ayrıca SOD düzeylerini düşürürken, MDA düzeylerinde ise ciddi bir artışa neden olmuştur. Sonuç: Bulgularımız SA'nın iyileştirici etkisini hedef alarak PC'nin antitümör potansiyelini ortaya çıkardı.
Anahtar Kelimeler: DU-145, MDA, Prostat kanseri, SOD, Şırınga asidi

References

  • Liu, C., Li, N., Dai, G., Cavdar, O., & Fang, H. (2021). A narrative review of circular RNAs as potential biomarkers and therapeutic targets for cardiovascular diseases. Annals of Translational Medicine, 9(7).
  • Oboh, G., Ademosun, A. O., & Ogunsuyi, O. B. (2016). Quercetin and its role in chronic diseases. Drug discovery from mother nature, 377-387.
  • Batiha, G. E. S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., ... & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 9(3), 374.
  • Chang, X., Zhang, T., Meng, Q., Yan, P., Wang, X., Luo, D., ... & Ji, R. (2021). Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxidative Medicine and Cellular Longevity, 2021.
  • Hu, Y., Gui, Z., Zhou, Y., Xia, L., Lin, K., & Xu, Y. (2019). Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radical Biology and Medicine, 145, 146-160.
  • Li, H., & Zhang, Q. (2023). Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals, 16(9), 1201.
  • Aggarwal, K., Bansal, V., Mahmood, R., Kanagala, S. G., & Jain, R. (2023). Asthma and Cardiovascular Diseases: Uncovering Common Ground in Risk Factors and Pathogenesis. Cardiology in Review, 10-1097.
  • Zhang, W., Zheng, Y., Yan, F., Dong, M., & Ren, Y. (2023). Research progress of quercetin in cardiovascular disease. Frontiers in Cardiovascular Medicine, 10.
  • Yamagata, K. (2023). Onion quercetin inhibits vascular endothelial cell dysfunction and prevents hypertension. European Food Research and Technology, 1-13.
  • Yan, L., Vaghari-Tabari, M., Malakoti, F., Moein, S., Qujeq, D., Yousefi, B., & Asemi, Z. (2023). Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Critical reviews in food science and nutrition, 63(28), 9163-9186.
  • Papakyriakopoulou, P., Velidakis, N., Khattab, E., Valsami, G., Korakianitis, I., & Kadoglou, N. P. (2022). Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals, 15(8), 1019.
  • Bartekova, M., Čarnická, S., Pancza, D., Ondrejčáková, M., Breier, A., & Ravingerová, T. (2010). Acute treatment with polyphenol quercetin improves postischemic recovery of isolated perfused rat hearts after global ischemia. Canadian journal of physiology and pharmacology, 88(4), 465-471.
  • Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., & Shin, H. S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European journal of medicinal chemistry, 155, 889-904.
  • Yamagata, K., & Yamori, Y. (2020). Inhibition of endothelial dysfunction by dietary flavonoids and preventive effects against cardiovascular disease. Journal of Cardiovascular Pharmacology, 75(1), 1-9.
  • Guo, B., Chou, F., Huang, L., Yin, F., Fang, J., Wang, J. B., & Jia, Z. (2022). Recent insights into oxidative metabolism of quercetin: Catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Critical Reviews in Food Science and Nutrition, 1-28.
  • Wang, M. H., Li, L. Z., Sun, J. B., Wu, F. H., & Liang, J. Y. (2014). A new antioxidant flavone glycoside from Scutellaria baicalensis Georgi. Natural product research, 28(20), 1772-1776.
  • Alizadeh, S. R., & Ebrahimzadeh, M. A. (2022). Quercetin derivatives: Drug design, development, and biological activities, a review. European journal of medicinal chemistry, 229, 114068.
  • Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021.
  • UCSF Chimera--a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 2004 Oct;25(13):1605-12.
  • Totrov, M., & Abagyan, R. (2008). Flexible ligand docking to multiple receptor conformations: a practical alternative. Current opinion in structural biology, 18(2), 178-184. https://doi.org/10.1016/j.sbi.2008.01.004 .
  • Mustafa, U. S. T. A., GÜLLER, A., DEMİREL, S., KORKMAZ, G., & Zeynelabidin, K. U. R. T. (2023). New insights into tomato spotted wilt orthotospovirus (TSWV) infections in Türkiye: Molecular detection, phylogenetic analysis, and in silico docking study. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13245-13245. https://doi.org/10.15835/nbha51313245.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Res., 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956 .
  • PerkinElmer. (2023). ChemBioDraw Ultra 14. Retrieved from https://scistore.cambridgesoft.com/chembiodraw/, Access Date: 15.03.2024.
  • Protein Data Bank. (2023). PDB ID: 1ema. Retrieved from https://www.rcsb.org/structure/1ema, Access Date: 15.03.2024.
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research, 46(W1), W363-W367. https://doi.org/10.1093/nar/gky473 .
  • AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Trott O, Olson AJ. J Comput Chem. 2010 Jan 30;31(2):455-61.
  • Schrödinger, LLC. (2023). Support. Retrieved from https://pymol.org/2/support.html , Access Date: 15.03.2024.
  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic acids research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294.
  • Biovia Discovery Studio Visualizer v21.1.0.20298 (BIOVIA, Dassault Systèmes, San Diego, CA, USA).
  • Niranjan, V., et al., Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS. Plos one, 2023. 18(8): p. e0288264.
  • Gharaghani, S., T. Khayamian, and M. Ebrahimi, Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR and QSAR in Environmental Research, 2013. 24(9): p. 773-794.
  • Sargsyan, K., C. Grauffel, and C. Lim, How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of chemical theory and computation, 2017. 13(4): p. 1518-1524.
  • Elangovan, N.D., et al., Screening of potential drug for Alzheimer’s disease: A computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2021. 39(18): p. 7065-7079.
  • Saravanan, K., G. Hunday, and P. Kumaradhas, Binding and stability of indirubin-3-monoxime in the GSK3β enzyme: A molecular dynamics simulation and binding free energy study. Journal of Biomolecular Structure and Dynamics, 2019.
  • Shukla, R., N.S. Munjal, and T.R. Singh, Identification of novel small molecules against GSK3β for Alzheimer's disease using chemoinformatics approach. Journal of Molecular Graphics and Modelling, 2019. 91: p. 91-104.
  • Eskandarzadeh, M., et al., Inhibition of GSK_3β by Iridoid Glycosides of Snowberry (Symphoricarpos albus) Effective in the Treatment of Alzheimer’s Disease Using Computational Drug Design Methods. Frontiers in chemistry, 2021. 9: p. 709932.
  • Shadidizaji, A., Cinisli, K. T., Warda, M., Cicek, B., & Hacimuftoglu, A. (2024). Virtual insights into the quercetin-Melampsora lini-derived effector AvrM14 interaction: An In silico exploration of plant defense mechanisms. Physiological and Molecular Plant Pathology, 129, 102200.
  • Shadidizaji,, A., Çınar, B., Cinisli, K. T., Rezai. M., Sağsöz, M. E., Okkay, U., ... & Hacımüftüoğlu, A. (2023). In silico study of synthetic Bromophenol Compounds against Staphylococcus aeurus's target protein (DHFR) Enzyme. Recent Trends in Pharmacology, 1(2), 72-85.
  • Rad, P. M., Rahbarnia, L., Safary, A., ShadiDizaji, A., & Maani, Z. (2023). The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties. Probiotics and Antimicrobial Proteins, 1-11.
  • Matta, C. F., Hernández‐Trujillo, J., Tang, T. H., & Bader, R. F. (2003). Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chemistry–A European Journal, 9(9), 1940-1951.
  • Bayan, A. M., Mosawi, S. H., Fani, N., Behrad, M. S., Mehrpoor, A. J., Noori, M. Y., ... & Amirkhezi, F. (2023). Integrating molecular docking and molecular dynamics simulation studies on the affinity and interactions of piperine with β-lactamase class A enzymes. Journal of Molecular Structure, 1292, 136151.
  • Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2022). Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. Journal of Biomolecular Structure and Dynamics, 40(10), 4662-4681.
  • Guillermo Gormaz, J., Quintremil, S., & Rodrigo, R. (2015). Cardiovascular disease: a target for the pharmacological effects of quercetin. Current topics in medicinal chemistry, 15(17), 1735-1742.
  • Siegbahn, P. E. (2004). Hybrid DFT study of the mechanism of quercetin 2, 3-dioxygenase. Inorganic chemistry, 43(19), 5944-5953.
  • Ren, G., Chen, H., Zhang, M., Yang, N., Yang, H., Xu, C., ... & Zhao, D. (2020). Pharmacokinetics, tissue distribution and excretion study of Oroxylin A, Oroxylin A 7-O-glucuronide and Oroxylin A sodium sulfonate in rats after administration of Oroxylin A. Fitoterapia, 142, 104480.
There are 45 citations in total.

Details

Primary Language English
Subjects Medical Pharmacology
Journal Section Research Articles
Authors

Yeşim Yeni 0000-0002-6719-7077

Sıdıka Genç 0000-0003-0000-5103

Publication Date May 3, 2024
Submission Date April 8, 2024
Acceptance Date April 22, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Yeni, Y., & Genç, S. (2024). Antitumoral Effect of Syringe Acid on DU-145 Prostate Cancer Cells. Recent Trends in Pharmacology, 2(1), 1-5. https://doi.org/10.62425/rtpharma.1466682