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Abstract − Structural Equation Models (SEMs) with latent variables provide a general framework for 

modelling relationships in multivariate data. Although SEMs are most commonly used in studies 

involving intrinsically latent variables, such as happiness, quality of life, or stress, they also provide a 

parsimonious framework for covariance structure modelling. For this reason, they have become 

increasingly used outside of traditional social science applications. Frequentist inferences are based on 

point estimates and hypothesis tests for the measurement and latent variable parameters. Although most 

of the literature on SEMs is frequentist, Bayesian approaches have been proposed in the last years. This 

study aims to provide an easily accessible overview of a Classic and a Bayesian approach to SEMs. 

Due to the flexibility of the Bayesian approach, it is straightforward to apply the method in a 

comprehensive class of SEM-type modelling frameworks, allowing nonlinearity, interactions, missing 

data, mixed categorical, count, and continuous observed variables. The WinBUGS software package, 

which is freely available, can be used to implement Bayesian SEM analysis. Bayesian model fitting 

typically relies on MCMC, which involves simulating draws from the joint posterior distribution of the 

model unknowns (parameters and latent variables) through a computationally intensive procedure. The 

advantage of MCMC is that there is no need to rely on broad sample assumptions because exact 

posterior distributions can be estimated for any function of the model unknowns. In small to moderate 

samples, these exact posteriors can provide a more realistic measure of model uncertainty. Therefore, 

we use the MCMC method for the Bayesian approach in this study. All approaches given above are 

applied to the data obtained from Samsun Chamber of Commerce and Industry. 

Keywords − Structural equation models, Bayesian approach, MCMC, Bayesian structural equation models 

1. Introduction 

The Structural Equation Model (SEM) is a multivariate statistical modelling technique that reveals the cause-

effect relationship between measurable variables and non-measurable (implicit) variables. SEM consists of 

Observed/Measured Variables and unobservable or unmeasurable variables (Latent Variables) that can 

function as endogenous and exogenous. Since implicit variables cannot be measured directly, it is essential to 

define the measurable variables that the researcher wants to examine, and that is thought to represent the 

implicit variable. Measurable variables that describe implicit variables can be one or more. Therefore, the fact 

that makes the implicit variable measurable is assessing variables or variables that define the implicit variable. 

In SEM, which is based on the causality relationship between implicit variables, each of the implicit 

variables is a linear function of the set of variables that were observed or measured. The parameters of these 
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linear functions are obtained using an analysis of covariance. It is tested that using the goodness of fit tests 

whether the researcher's model is compatible with the data’s variance-covariance structure. If the model 

predictions are accepted at the end of the test, the linear relationship between the implicit variables is assumed 

to be reasonable. SEM is a hybrid method that combines factor analysis and path analysis. Perhaps the main 

reason why SEM is so widely used today is that direct or indirect relationships between observable and 

unobservable variables can be analysed in a single model. SEM can also be considered as multiple regression 

analysis, and factor analysis performed simultaneously. Therefore, YEM; is also named with definitions such 

as causal analysis, causal modelling, concurrent structural modelling, covariance structure analysis, path 

analysis, or confirmatory factor analysis. 

SEM is based on three basic analytical developments [1]. These are, respectively, path analysis, latent 

variable model, and general covariance estimation methods. Wright [2] started his first studies on road analysis 

and along with other studies, road analysis was developed and basic rules were established [2,3]. Today, SEM 

is widely used in many fields such as behavioral sciences, educational sciences, economics, marketing, health 

sciences and social sciences. In examining the structural relations of production practices, delivery time and 

productivity in Japan and Korea, the effect of time-based production on customer-specific production and 

adding value to the customer, the development of customer satisfaction index in the Turkish mobile phone 

industry, evaluation of customer satisfaction in the telephone industry with multi-level structural equation 

models, brand In the measurement of the value of the supply chain management, the effect of e-supply chain 

competence on competitive advantage and organizational performance, the effect of supplier development on 

purchasing performance, in modelling student success, In performing risk analysis in the coal mine 

construction project, The effects of total quality management practices applied in enterprises on employee 

performance, the examination of factors affecting individuals’ adoption of internet banking, in fraudulent 

financial reporting determination of auditor responsibility, investigation of the effect of critical control 

(success) factors in enterprise resource planning (ERP) applications, determinants of capital structure selection. 

Effects of depression and disease severity on quality of life, Use of SEM in decision tree models, Operation 

management, symptoms related to ecstatic; the role of fear of blood, injection and injury (KEY), estimation of 

post-stress traumas of child welfare institutions, processing speed, relationship between intelligence, creativity 

and school performance, use of incremental goodness of fit indexes in market research studies, structural 

equation for river water quality data model, role ambiguity, role conflict, relationships between job satisfaction 

and performance, structural equation technique and interactional stress and coping model. 

Why not take advantage of our abilities, which we regularly use and call intuition, common sense, and sixth 

sense, for scientific purposes? Bayes Theory emerges as an alternative inference in the scientific use of such 

abilities. The classic inference is to conclude the population we do not have information about with sample 

data. Statistical operations such as confidence intervals and hypothesis tests are the basis of classical inference. 

However, “Life; It is the art of drawing sufficient conclusions from insufficient a priori.” Thomas Bayes, who 

has a similar opinion with Samuel Butler, has a different perspective on the audience’s inference based on the 

observed sample data. In general, he formed the chain of logic from causes to effects, from results to causes. 

In the last 30 years, using an approach different from other common basic approaches in statistical analysis 

has increased. This approach is Bayesian inference and is based on the well-known theorem put forward by 

Thomas Bayes in 1763. Thomas Bayes did not even predict that his simple probabilistic theorem would be a 

statistical method of inference. However, in the last 30 years, this theorem has influenced many statisticians 

and mathematicians, and Bayes statistics has been accepted as the primary method of statistical inference. 

Many researchers such as Jeffreys, de Finetti, Savage, and Lindley contributed to the development of Bayesian 

analysis. In recent years, the technical applicability of Bayes analysis has also rapidly developed using 

computers and has opened up new application areas. As a result of these developments, Bayesian analysis was 

expanded with researchers such as Berger [4] and Bernardo and Smith [5]. 

Today, Bayesian analysis is successfully applied in every discipline. Many applied studies have been 

revealed. A broad overview of these studies will be given below. It is often difficult to calculate the Bayesian 
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factor. Different calculation methods have been proposed by Kass and Raftery [6]. A simple approach is used 

in the Bayesian Knowledge Criteria (BIC) YEM. For example, [7] on the LISREL model, Lee and Song [8] 

on the two-level SEM, Jedidi, Jagpal [9] applied to finite mixed SEM. Also, posterior simulation based 

approaches are used in Bayes Factor calculations. DiCiccio, Kass [10] detailed many methods from the Laplace 

approach to importance sampling. Gelman and Meng [11] developed a road sampling approach. Lee [12] gave 

the Bayesian approach with WinBUGS applications on linear, nonlinear and loss observation structural 

equation models. Wang and Fan [13] examined the factors affecting myopia disease with Bayesian structural 

equation models. Bayesian approach for semi-parametric structural equation models is given by Guo, Zhu 

[14]. In the first part of this study, firstly, literature information about structural equation models, secondly 

Bayesian approach and finally Bayesian structural equation models are given. In the second section under the 

title of basic information, basic concepts related to structural equation models and Bayesian approach are 

presented. Linear and nonlinear structural equation models are presented with a Bayesian approach in the 

material method section. In the fourth chapter, 2011 data of Samsun Chamber of Commerce and Industry 

member satisfaction are used. There are 4 factors that are thought to affect the overall satisfaction of the room. 

These 4 factors are guidance, solution, personnel and representation factors, respectively. Factors affecting the 

general satisfaction of the chamber were determined by both classical and Bayesian structural equation models. 

2. Materials and Methods 

2.1.  Linear Structural Equation Modelling 

Due to the nature of the problems and the design of the questionnaires in behaviour, education, medical and 

social sciences, data are usually obtained as sequential categorical variables. Examples of these variables; 

Scales such as attitude scales, likert scales, rating scales can be given. When questioned about some attitudes, 

the scale was “I do not approve”, “I have no idea”, “I approve”, while questioning about the effect of a drug 

was “worsened”, “did not change”, “got better” and when questioned about a political event, definitely “I don’t 

agree”, “I don’t agree”, “I have no idea”, “I agree”, “I absolutely agree”. Consider a five-point scale associated 

with responses to a political event. A common approach is to treat these integer values as continuous values 

drawn from the normal distribution. This approach does not cause serious problems if the histograms of the 

observation value are symmetrical and the frequencies of the central values are high. This will emerge in many 

cases when the “I have no idea” option is chosen. To claim that the observed variables are multivariate 

normally distributed, in most cases we have to choose the middle category. For example, “I have no idea” or 

“no change”. In many cases likert scales may have clutter at both ends. For example, such as “strongly agree 

(strongly disagree)” or “agree (disagree)”. Therefore, histograms are either skewed or bimodal as opposed to 

the variables involved. Treating such ordered categorical variables as normal may lead to erroneous results 

[15,16]. A better approach for evaluating discrete data is to consider these data as latent continuous variables 

from a specified threshold normal distribution. For a given data set, the ratios of 1, 2, 3, and 4 values are 0.05, 

0.05, 0.40, and 0.5, respectively. From the histogram given in Figure 1, it is seen that the dashed data are 

skewed to the right. 

 

Fig. 1. Historical development of YEM [17] 
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The threshold approach for the analysis of this discrete data is to consider the discrete categorical data as 

normal variable 𝑦. There are no precise continuous measurements of 𝑦 but they are related to the observed 

ordered categorical variable 𝑧. This relationship is expressed as follows: 

𝑧 = 𝑘            𝑖𝑓   ∝𝑘−1< 𝑦 <∝𝑘      𝑘 = 1,2,3,4 

Here, −∞ <∝1<∝2<∝3< ∞ where ∝1, ∝2 and ∝3 are threshold values. Then, the histogram of sequential 

categorical observations given in Figure 1 can be in a view with 𝑁[0.1] distribution with appropriate threshold 

values as in Figure 2.  

 

Fig. 2. Histogram chart of the scale 

While the difference ∝2−∝1  may differ from the difference ∝3 −∝2, unequal scales are allowed. 

Therefore, this threshold approach allows flexible modelling. As associated with a common normal 

distribution, it also allows parameters to be easily interpreted. It should be noted that temporary integer values 

(𝑘 =  1,2,3,4) are used only to represent the category; Only the frequencies of these values are important in 

statistical analysis. Structural equation modelling consisting of continuous and discrete data does not have a 

simple structure. Because it is necessary to calculate multiple integrals associated with cell probabilities 

determined by ordered categorical results [12]. 

Some multi-step methods have been introduced to reduce the computational difficulties of these integrals. 

The basic procedure of these multi-stage methods is polychromic and polyserial correlations, estimating the 

threshold value in the first stage, deriving the asymptotic distribution of the predictions in the second stage, 

and analysing the structural equation model with the generalized least-squares approach and covariance 

structural equation model in the last stage. There are different methods at the first stage to manage the different 

procedures given in PRELIS and LISREL. Different methods initially applied PRELIS and LISREL [18], 

LISCOMP and MPLUS [19], and Lee et al. [20] causes different operations. Multistep estimators, however, 

are not statistically optimal and need to invert a large matrix of size that increases very rapidly with the number 

of variables that can be observed at each stage of generalized least squares minimization. Besides multi-step 

operations, Reboussin and Liang [21] proposed an equality estimation approach and Shi and Lee [22] 

developed a Monte Carlo EM algorithm for the maximum likelihood analysis of a factor analysis model.  

When dealing with sequential categorical variables in Bayesian analysis, the basic idea is to treat the 

expressed latent continuous measurements as hypothetically lost data and amplify them with observed data in 

posterior analysis. Using this data magnification strategy, the model based on the full data set becomes 

continuously variable. Sequences of observations of structural parameters, latent variables, and thresholds in 

infinitive analysis are simulated from the composite posterior distribution using a hybrid algorithm that is the 

combination of Gibbs sampling [23] and MH algorithm [24,25]. Combined Bayesian estimates of unknown 

thresholds, structural parameters, and latent variables are produced together with the standard error estimates 

of these estimates by using simulated observations. In addition to these point estimates, Bayesian model 

selection can be reviewed using the Bayes factor [12]. 
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2.2.  Application Material 

The questions regarding the Samsun Chamber of Commerce and Industry member satisfaction survey used in 

this study. Table 1 is also given. 

Table 1. Survey questions and related factors 

Factors Question Factor Name  

a1 H1 

General 

General When you think about it in general, how satisfied you 

with are being a member of our chamber? 

a1 H2 
Generally speaking, how satisfied are you with the services of 

our room? 

a2 H3 

Guidance 

Guidance Room responds to our requests in a timely manner 

a2 H4 
The efficiency of the chamber in strengthening the dialogue 

between the public authority and the industrialist is sufficient. 

a2 H5 
The efficiency of chamber services in the development of the 

sectors is sufficient. 

a2 H6 
Chamber efficiency is sufficient in terms of national and 

international expansion of the members. 

a3 H7 

Solution 

Solution I find the room management successful in 

understanding our problems / needs related to the sector. 

a3 H8 I can reach the management / concerned people when we need it 

a3 H9 
Room management has the ability to produce solutions to your 

sectoral problems 

a3 H10 
Our individual problems are taken into consideration by the 

room management. 

a3 H11 
I find room management successful in providing an environment 

and coordination that helps to solve individual problems. 

a4 H12 

Personal 

Staff Attitudes and behaviours of personnel in business relations 

a4 H13 Personnel being innovative and productive 

a4 H14 Personnel bringing suggestions and guidance 

a5 H15 

Representation 

Representation How satisfied are you with the representation 

level of the Chamber management? 

a5 H16 
How satisfied are you with the chamber management in terms of 

member relations? 
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3. Results 

In this study, member satisfaction survey data with 616 companies randomly selected among Samsun Chamber 

of Commerce and Industry members in 2011 were used. The aim is to reveal the structural relationship between 

general satisfaction from Samsun Chamber of Commerce and Industry and guidance, solution, personnel and 

representation. The application consists of 2 steps. In the first step, the structural equation model was examined 

with confirmatory factor analysis using the LISREL package program. In the second step, the Bayesian 

structural equation model was analysed using the WinBUGS package program.  

CLASSIC SOLUTION WITH LISREL 

All relevant observed variables were associated with latent variables using a one-way road vehicle. The main 

reason why we draw the path diagram is that it allows easy visualization of the relationship between variables. 

After completing the figural representation of the relationship between variables, the solution phase was 

started. In the solution phase, the fit indices specified in the material and method section were examined and 

the final solution was obtained. Goodness of fit criteria are extremely important in obtaining the final solution. 

Although there is no comparison in the literature regarding the superiority of goodness of fit criteria, the 

LISREL program has highlighted the RMSEA value under the path diagram. Since the RMSEA value was not 

within the required fit criteria in the initial solution, the correction indices suggested by the program were 

examined and the solution process was repeated. The correction indices suggested as a result of the LISREL 

solution were used and associated as shown in Figure 3. The decrease in chi-square value is taken into account 

when using correction indices. The new solution is obtained by performing the correction process that provides 

the highest decrease in the chi-square value. Below, all the situations under the Estimates option in the LISREL 

program are shown on the path diagram. 

 
Fig. 3. Threshold values for the scale 

The non-standardized coefficients obtained as a result of the LISREL solution are shown in Figure 3. The 

chi-square value was obtained as 67.71 at the program output. The ratio of the chi-square value to the degrees 

of freedom 50 is obtained as 1.35. This ratio shows us that the model established is a very powerful model. 

Another supporting indicator is the approximate root mean square error (RMSEA) value. The fact that this 

value is close to (0.024) 0 shows that the fit of the model is good. After checking the general fit of the model, 

the significance of the model parameters was examined. 
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Fig 4. Unstandardized results 

 

Fig. 5. Unstandardized results 

Figure 4 contains the standardized path coefficients for the parameters, while the 𝑡-values of the non-

statistically significant path coefficients on the path diagram are given in Figure 5. The 𝑡-values of the non-

significant path coefficients are shown in red in the path diagram. When the 𝑡-values of the variables of 

guidance, solution, personnel and representation, which are thought to have an effect on general satisfaction, 

were examined, it was seen that the guidance (𝑡 =  −0.93) and personnel (𝑡 =  −1.06) variables were 

meaningless. 

 



 

63 

 

Journal of New Theory 33 (2020) 56-75 / A Classical and Bayesian Approach for Parameter Estimation in Structural … 

Interpreting Measurement Model Results 

After the path diagram is obtained, the process of interpreting the analysis results is started. The results 

obtained are given below. 

Table 2. Measurement model results 

 

Measurement model results are given in Table 2. The standardized loads included in the measurement 

model results show the correlation between each observed variable and the implicit variable it is related to. 

Considering the first indicator of the implicit variable a1, H1, the correlation coefficient is 0.75. When the 

correlation coefficient is squared, R2 of H1 is 0.56. It is seen that the variability related to the implicit variable 

a1 is mostly explained by H2 (0.62). Fit criteria for the measurement model are given in Table 3. 

Factor / Expression Standardized Loads 𝒕-values R2 

Factor a1    

H1 0.75  0.57 

H2 0.79 19.67 0.62 

Factor a2    

H3 0.77 21.65 0.60 

H4 0.71 17.95 0.52 

H5 0.44 9.35 0.34 

H6 0.83 23.74 0.69 

H8 0.25 3.80 0.73 

H10 −0.46 −𝟓. 𝟏𝟗 0.41 

H11 −0.01 −𝟎. 𝟏𝟏 0.23 

H13 0.25 5.23 0.19 

H14 −0.24 −𝟏. 𝟒𝟒 0.71 

Factor a3    

H7 0.63 16.18 0.39 

H8 0.63 10.03 0.73 

H9 0.83 24,84 0.69 

H10 1.02 11.53 0.41 

H11 0.16 𝟎. 𝟗𝟗 0.23 

H14 0.50 2.62 0.71 

Factor a4    

H12 0.55 12.16 0.30 

H13 0.35 8.02 0.19 

H14 0.59 5.49 0.71 

H4 0.08 𝟏. 𝟔𝟖 0.52 

H5 0.35 9.15 0.34 

Factor a5    

H15 0.61 13.57 0.37 

H16 0.51 11.78 0.26 

H11 0.33 3.98 0.23 
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Table 3. Fit criteria for the model 

Fit Measurement Good Fit Acceptable Fit Results 

𝜒2 0 ≤ 𝜒2 ≤ 2𝑑𝑓  67.71  

(𝑃 = 0.04831) 

P of Close Fit ≥ 0.05  1.00 

𝜒2

𝑑𝑓
 0 ≤

𝜒2

𝑑𝑓
≤ 2 2 ≤

𝜒2

𝑑𝑓
≤ 3 1.35 

RMSEA 0 ≤RMSEA≤ 0.05 0.05 ≤ RMSEA ≤ 0.08 0.024 

NFI 0.95 ≤ NFI ≤ 1 0.90 ≤ NFI ≤ 0.95 0.99 

NNFI 0.97 ≤ NNFI ≤ 1 0.95 ≤ NNFI ≤ 0.97 1.00 

CFI 0.97 ≤ CFI ≤ 1 0.95 ≤ CFI ≤ 0.97 1.00 

GFI 0.95 ≤ GFI ≤ 1 0.90 ≤ GFI ≤ 0.95 0.99 

AGFI 0.90 ≤ AGFI ≤ 1 0.85 ≤ AGFI ≤ 0.90 0.96 

PGFI ≥ 0.95  0.36 

AIC  239.71 

ECVI  0.39 

IFI ≥ 0.95 0.90 ≤ IFI ≤ 0.94 1.00 

RFI ≥ 0.90  0.99 

Critical N   688.06 

The adaptation criteria obtained for the model are presented in Table 3. When the results are examined, it 

is seen that the goodness of fit criteria are within the ranges recommended by the literature. It was seen that 

the value (1.35) obtained by dividing the Chi-square value by the degrees of freedom was within the acceptable 

range. 

Table 4. Structural relationship coefficient values 

Factor / Expression Standardized Loads 𝒕-values R2 

Factor a1    

a2 0.23 𝟏. 𝟔𝟏 

𝟎. 𝟗𝟑 
a3 0.59 3.20 

a4 0.32 4.28 

a5 −0.01 −𝟎. 𝟏𝟒 
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In Table 4, standardized loads and t-value are given regarding the structural relationship between the 

general satisfaction implicit variable and the implicit variables of guidance, solution, personnel and 

representation. According to the results, the path coefficients between the general satisfaction. 

 

Table 5. Frequency disturbution from response to the questions 

 

Implicit variable and the counselling and representation implicit variable were not found to be significant. 

Only the structural relationship between the general satisfaction implicit variable and the solution and 

personnel implicit variable was found to be significant. Bayesian solution has been implemented with 

WinBUGS package program. Before starting the Bayesian solution, frequency tables for 16 questions were 

prepared. The main purpose of extracting the frequency tables is to determine the percentage rates for each 

question of the 5-point Likert scale used in the questionnaire form and the threshold values required for analysis 

based on these rates. The frequency distribution of each question is given in the table below. The threshold 

values were started to be calculated by obtaining the percentages of the scale categories from the frequency 

table for each question. Threshold value calculation is made as one minus of the number of categories used in 

Likert scale. Threshold values in Table 6 were obtained from the reverse of the normal cumulative distribution 

by using the relevant frequency tables. 

 

 

 
Likert Scale  

𝟏 𝟐 𝟑 𝟒 𝟓 Sum 

H1 2 67 119 294 134 616 

H2 36 210 139 184 47 616 

H3 16 127 177 168 128 616 

H4 28 115 121 161 191 616 

H5 27 97 197 130 165 616 

H6 13 89 129 195 190 616 

H7 45 106 184 183 98 616 

H8 9 143 86 292 86 616 

H9 30 159 157 217 53 616 

H10 8 44 182 332 50 616 

H11 8 51 220 249 88 616 

H12 4 44 259 255 54 616 

H13 3 42 206 190 175 616 

H14 29 49 205 292 41 616 

H15 4 57 122 361 72 616 

H16 5 16 114 264 217 616 
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Table 6. Distribution percentage of response to the questions 

The expressions to be used in the analysis in WinBUGS are given in the table below for both measurement 

models and structural equation model. 

Structure of model in WinBUGS 

Table 7. Symbolic representation of implicit and measurable variables 

Factor Questions Node Implicit Variable Node 

a1 H1 1 a1 a2 gam[1] 

a1 H2 lam[1] a1 a3 gam[2] 

a2 H3 1 a1 a4 gam[3] 

a2 H4 lam[2] a1 a5 gam[4] 

a2 H5 lam[3] 

a2 H6 lam[4] 

a3 H7 1 

a3 H8 lam[5] 

a3 H9 lam[6] 

a3 H10 lam[7] 

a3 H11 lam[8] 

a4 H12 1 

a4 H13 lam[9] 

a4 H14 lam[10] 

a5 H15 1 

a5 H16 lam[11] 

 
Likert Scale 

𝟏 𝟐 𝟑 𝟒 𝟓 

H1 0.003247 0.108766 0.193182 0.477273 0.217532 

H2 0.058442 0.340909 0.225649 0.298701 0.076299 

H3 0.025974 0.206169 0.287338 0.272727 0.207792 

H4 0.045455 0.186688 0.196429 0.261364 0.310065 

H5 0.043831 0.157468 0.319805 0.211039 0.267857 

H6 0.021104 0.144481 0.209416 0.316558 0.308442 

H7 0.073052 0.172078 0.298701 0.297078 0.159091 

H8 0.01461 0.232143 0.13961 0.474026 0.13961 

H9 0.048701 0.258117 0.25487 0.352273 0.086039 

H10 0.012987 0.071429 0.295455 0.538961 0.081169 

H11 0.012987 0.082792 0.357143 0.404221 0.142857 

H12 0.006494 0.071429 0.420455 0.413961 0.087662 

H13 0.00487 0.068182 0.334416 0.308442 0.284091 

H14 0.047078 0.079545 0.332792 0.474026 0.066558 

H15 0.006494 0.092532 0.198052 0.586039 0.116883 

H16 0.008117 0.025974 0.185065 0.428571 0.352273 
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Measurement of The Equality 

for(j in 1:P){ 

 

y[i,j]~dnorm(mu[i,j],psi[j])I(thd[j,z[i,j]],thd[j,z[i,j]+1]) 

  ephat[i,j]<-y[i,j]-mu[i,j] 

 } 

 mu[i,1]<-eta[i] 

 mu[i,2]<-lam[1]*eta[i] 

 mu[i,3]<-xi[i,1] 

 mu[i,4]<-lam[2]*xi[i,1] 

 mu[i,5]<-lam[3]*xi[i,1] 

 mu[i,6]<-lam[4]*xi[i,1] 

 mu[i,7]<-xi[i,2] 

 mu[i,8]<-lam[5]*xi[i,2] 

             mu[i,9]<-lam[6]*xi[i,2] 

 mu[i,10]<-lam[7]*xi[i,2] 

 mu[i,11]<-lam[8]*xi[i,2] 

 mu[i,12]<-xi[i,3] 

 mu[i,13]<-lam[9]*xi[i,3] 

 mu[i,14]<-lam[10]*xi[i,3] 

     mu[i,15]<-xi[i,4] 

 mu[i,16]<-lam[11]*xi[i,4] 

 

Structural Equation 

xi[i,1:4]~dmnorm(u[1:4],phi[1:4,1:4]) 

  eta[i]~dnorm(nu[i],psd) 

  nu[i]<-gam[1]*xi[i,1]+gam[2]*xi[i,2]+gam[3]*xi[i,3]+gam[4]*xi[i,4] 

  dthat[i]<-eta[i]-nu[i] 

Threshold Values 

thd=structure( 

       .Data=c(-200.000.-2.722,-1.216,-0.510. 

0.781,200.000. 

-200.000.-1.568,-0.255, 0.319, 1.430.200.000. 

-200.000.-1.944,-0.732, 0.049, 0.814,200.000. 

-200.000.-1.691,-0.732,-0.180. 0.496,200.000. 

-200.000.-1.708,-0.837, 0.053, 0.619,200.000. 

-200.000.-2.031,-0.972,-0.319, 0.500.200.000. 

-200.000.-1.453,-0.690. 0.110. 0.998,200.000. 

-200.000.-2.180.-0.685,-0.289, 1.082,200.000. 

-200.000.-1.658,-0.505, 0.155, 1.366,200.000. 

-200.000.-2.227,-1.376,-0.306, 1.397,200.000. 

-200.000.-2.227,-1.306,-0.118, 1.068,200.000. 

-200.000.-2.484,-1.419, -0.004, 1.355,200.000. 

-200.000.-2.585,-1.453,-0.234, 0.571,200.000. 

-200.000.-1.674,-1.142,-0.102, 1.502,200.000. 

-200.000.-2.484,-1.287,-0.533, 1.191,200.000. 

-200.000.-2.404,-1.824,-0.775, 0.379,200.000), 

       .Dim=c(16,6)), 

Primarily, the point at which convergence was achieved was determined and this point was used as the 

burning period. Two methods were used to check whether convergence was achieved. The first of these is to 

examine the trace graphs for the related parameters. The trace graphs of the path coefficients for each 

measurement equations are given below. When the trace charts are examined, it is seen that the predicted 

values in the parameters gradually become stagnant and not take extreme values. 
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Fig. 6. Trace graphics related to measurement model parameters 

 

When the trace graphs of the measurement model parameters in Figure 6 are examined, it is seen that there 

is no extreme value. After 11000 samples, it can be seen from the trace graphs that convergence is achieved.  

 

 

Fig. 7. Trace graphics related to measurement model parameters 
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Fig. 8. Trace graphics related to structural model parameters 
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When the trace graphs of the structural equation model parameters in Figure 8 are examined, it is seen that 

there is no extreme value as in the measurement model parameters. After 11000 samples, it can be seen from 

the trace graphs that convergence is achieved. The interpretation of trace charts alone does not provide us with 

precise information on whether convergence is achieved. Secondly, the Thumb rule, which is a stronger 

method, is used to determine whether convergence is achieved. As a rule, MC errors for each parameter must 

be less than 5% of the standard deviation values. In the table below, it can be checked whether there is 

convergence for both the measurement and structural equation parameters. 

Table 8. Convergence results of measurement model and structural equation model parameters 

Node Mean 
Standard 

Deviation 
Sd. (𝟓%) MC error 𝟐. 𝟓𝟎% Median 𝟗𝟕. 𝟓𝟎% 

gam[1] 0.3074 0.08184 0.004092 0.00328 0.1571 0.304 0.4626 

gam[2] 0.5539 0.1152 0.00576 0.00549 0.348 0.5526 0.7694 

gam[3] 0.1405 0.09059 0.00453 0.003564 −0.04055 0.1425 0.312 

gam[4] 0.2714 0.08856 0.004428 0.003877 0.1012 0.2702 0.4458 

lam[1] 0.9102 0.0487 0.002435 0.001313 0.8182 0.9095 1.005 

lam[2] 0.8605 0.06729 0.003365 0.001976 0.7517 0.8582 0.9763 

lam[3] 0.7595 0.06857 0.003429 0.002095 0.6467 0.757 0.8805 

lam[4] 1.075 0.06825 0.003413 0.002101 0.9633 1.073 1.193 

lam[5] 1.167 0.07395 0.003698 0.003261 1.045 1.166 1.296 

lam[6] 1.154 0.07424 0.003712 0.003361 1.034 1.152 1.284 

lam[7] 0.9194 0.07099 0.00355 0.00276 0.8021 0.9167 1.045 

lam[8] 0.6654 0.06959 0.00348 0.002214 0.5485 0.6637 0.7891 

lam[9] 0.8138 0.08949 0.004475 0.002305 0.65 0.811 0.9912 

lam[10] 1.381 0.09121 0.004561 0.003211 1.217 1.378 1.565 

lam[11] 0.8534 0.09682 0.004841 0.003385 0.6805 0.8497 1.04 

As can be seen in Table 8, MC error values of all parameters related to measurement models and structural 

equation models are less than 5% of the standard deviation values. Buddha reveals the point at which 

convergence is achieved in the Bayesian solution more clearly than the trace graphs. The main purpose in 

finding the point at which convergence is achieved is to determine the burning period and to ensure that the 

estimates up to this period are not taken into account. After the burning period, 15000 updates were made, 

and parameter estimations were made for the model. The historical graphics for each parameter are represented 

in Figure 9.  



 

71 

 

Journal of New Theory 33 (2020) 56-75 / A Classical and Bayesian Approach for Parameter Estimation in Structural … 

 

Fig. 9. History plots for parameters 

Past graphs of the path coefficients related to both measurement models and structural equation model are 

given. From these graphs, it can be seen that there are no excessive fluctuations, and that each parameter 

converges. The Bayesian structural equation results obtained over 26000 samples, 11000 of which were taken 

using the burning period, are given in the table below. 

Table 9. Bayesian prediction results 

Node Mean 
Standard 

Deviation 
Sd. (𝟓%) MC error 𝟐. 𝟓𝟎% Median 𝟗𝟕. 𝟓𝟎% 

gam[1] 0.3132 0.07689 0.003845 0.003078 0.1659 0.3129 0.4667 

gam[2] 0.5436 0.1055 0.005275 0.004844 0.3391 0.5432 0.7545 

gam[3] 𝟎. 𝟏𝟒𝟎𝟏 𝟎. 𝟎𝟖𝟗𝟕𝟓 𝟎. 𝟎𝟎𝟒𝟒𝟖𝟖 𝟎. 𝟎𝟎𝟑𝟒𝟏𝟗 −𝟎. 𝟎𝟑𝟏𝟓𝟒 𝟎. 𝟏𝟑𝟗𝟖 𝟎. 𝟑𝟏𝟕𝟏 

gam[4] 0.2749 0.08222 0.004111 0.003308 0.1139 0.2741 0.4383 

lam[1] 0.9111 0.04736 0.002368 0.001148 0.8211 0.9095 1.007 

lam[2] 0.8605 0.05756 0.002878 0.001349 0.751 0.8595 0.9768 

lam[3] 0.7586 0.05795 0.002898 0.001222 0.6478 0.7578 0.8758 

lam[4] 1.073 0.05736 0.002868 0.001587 0.9642 1.071 1.188 

lam[5] 1.166 0.0619 0.003095 0.002353 1.047 1.165 1.289 

lam[6] 1.151 0.0609 0.003045 0.002406 1.036 1.15 1.275 

lam[7] 0.9171 0.0623 0.003115 0.00192 0.7966 0.9156 1.042 

lam[8] 0.6643 0.06102 0.003051 0.001395 0.5479 0.6627 0.7858 

lam[9] 0.8176 0.0875 0.004375 0.002139 0.6521 0.815 0.9956 

lam[10] 1.382 0.08879 0.00444 0.00332 1.216 1.381 1.563 

lam[11] 0.8461 0.08819 0.00441 0.00268 0.6808 0.8449 1.023 
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Bayesian parameter estimation results are given in Table 9. Only the gamut [3] structural equation 

parameter is meaningless. Additionally, parameter estimates of classical and Bayesian measurement models 

were represented in the Table 10 and 11. 

Table 10. Parameter estimates of classical and Bayesian measurement models 

Factor/ Expression LISREL BAYES 

Factor a1   

H1 0.75 1 

H2 0.79 0.9111 

Factor a2   

H3 0.77 1 

H4 0.71 0.8605 

H5 0.44 0.7586 

H6 0.83 1.073 

Factor a3   

H7 0.63 1 

H8 0.63 1.166 

H9 0.83 1.151 

H10 1.02 0.9171 

H11 0.16 0.6643 

Factor a4   

H12 0.55 1 

H13 0.35 0.8176 

H14 0.59 1.382 

Factor a5   

H15 0.61 1 

H16 0.51 0.8461 

Table 11. Classical and Bayesian structural model parameter estimates 

Factor/ Expression LISREL BAYES 

Factor a1   

a2 𝟎. 𝟐𝟑 0.31 

a3 0.59 0.54 

a4 0.32 𝟎. 𝟏𝟒 

a5 −𝟎. 𝟎𝟏 0.27 

With LISREL, it was seen that the implicit variables of counselling and representation did not have an 

effect on general satisfaction in the classical solution, only the solution and staff implicit variables were 

effective. In the Bayesian approach, contrary to the classical analysis, it was found that the counselling implicit 

variable and the representation implicit variable were significant, while the staff implicit variable was not 

significant. 
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4. Conclusion 

In this study, classical structural equation models and Bayesian structural equation models are emphasized. 

Both approaches were applied to the survey data obtained from Samsun Chamber of Commerce and Industry. 

The data consists of 16 observed variables measuring 5 latent variables and 616 observations. Structural 

relationship and measurement models designed in classical analysis were created. First, the model fit indices 

were examined, and the analysis process was started. When the measurement models created in LISREL and 

the structural relationship were examined, it was seen that the model fit was not good and correction indices 

were needed. Correction indices were discussed in two parts. The correction indices in the first part show the 

relationships between observed variables and latent variables. The correction indices in this section show the 

decrease in the chi-square value calculated to evaluate model fit as a result of associating the observed variables 

under one latent variable with another latent variable. The correction indices in the second part are based on 

the independence of the errors for the observed variables. Since the model fit was not achieved in the initial 

solution, the analysis was performed using correction indices. In the initial solution, both the RMSEA value 

was higher than 0.08 and the division of the chi-square to the degrees of freedom was over 3. These values 

made it necessary to use correction indices in classical analysis. After the recommended corrections were made 

in the measurement model, it was determined that the model fit well according to all the criteria used in the 

assessment of goodness of fit. When the obtained fit indices were examined, the RMSEA value was found to 

be 0.024 and the division of the chi-square to the degrees of freedom was found to be 1.35. After examining 

the model fit indices, parameter estimation was started. Otherwise, it would not be reasonable to examine the 

parameter estimates unless the model fit is achieved. The significance of the parameter estimates related to the 

measurement models and the structural model was examined using t-values. Path coefficient with a 𝑡-value 

below 1.96 was considered to be insignificant. One of the most important advantages of the path diagram in 

classical analysis is that the meaningless relations are shown in shape and in different colours. This advantage 

allows for interpretation and viewing all relationships in a single photo. It was determined that the structural 

relationship between the counselling and representation implicit variables symbolized by a2 and a5 of the 

general satisfaction implicit variable was insignificant. While there was no significant relationship between 

the two latent variables and the general satisfaction implicit variable, a significant relationship was found 

between the other two latent variables (solution and staff). With this structural relationship obtained, 93% of 

the general satisfaction implicit variable is explained. 

In the Bayesian structural equation model solution, model structures were defined in two stages: 

measurement models and structural model. By creating the frequency tables for the questions prepared using 

a 5-point Likert, (4) threshold values equal to one less than the number of Likert categories were calculated. 

The inverse of the cumulative normal distribution was used in calculating the threshold values. With the 

calculation of the threshold values, the model was started to be analysed. The most important step of the 

analysis phase is convergence. Unless convergence was achieved, model parameters were not estimated. It 

was seen that all parameters related to the model converged in 11000 iterations. Convergence has been 

examined in two stages. In the first stage, the trace graphs of each parameter were examined, and a stationary 

structure was observed. The interpretation of trace charts alone is not sufficient as a precise information. In the 

second stage, according to the Thumb rule; The condition that MC error values for each parameter should be 

less than 5% of the standard deviation value of the same parameter was examined. All parameters were found 

to meet this requirement and 11000 was used as the burning period. The purpose of using 11000 as the 

burning period is to ignore the parameter values in these iterations where convergence is not achieved. After 

the burning period, the parameters related to the model were obtained at the end of 15000 iterations. When 

the structural relationship between general satisfaction and the other 4 latent variables was examined, it was 

seen that the personnel implicit variable represented by a4 was meaningless, unlike the classical analysis. 

Guidance, solution, personnel and representation factors affecting general satisfaction were examined in 

the data obtained from Samsun Chamber of Commerce and Industry, and it was revealed that classical and 
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Bayesian approaches give different results in terms of parameter estimates. While only the solution and 

personnel implicit variables were significant in the classical approach, the implicit variables of guidance, 

solution and representation were found to be significant in the Bayesian approach. This study was applied to 

the standard Samsun Chamber of Commerce and Industry questionnaire, whose data were prepared previously. 

The results can be obtained differently by redesigning and obtaining the questionnaire forms. Model 

comparisons were not emphasized in this thesis. In the classical approach, Akaike information criterion was 

calculated, and AIC, BIC and DIC calculations in Bayesian approach will be our future studies. 

Although there are many a priori selection methods in the Bayesian approach, a priori selection in this study 

is limited to only conjugate a priori. Theoretical information is given about the use of other a priori such as 

Jeffrey’s a priori. Therefore, a priori comparison and comparison of the adaptation criteria in the Bayesian 

approach has prepared a theoretical background for the studies to be carried out in the following years. In this 

study, the scale type is taken as a fixed 5-point Likert. There are no studies on the use of Bayesian structural 

equation when the types of scales are different. Studies in this field will provide new gains to the literature. 
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