Research Article
BibTex RIS Cite
Year 2023, , 1 - 9, 01.01.2023
https://doi.org/10.31067/acusaglik.1174521

Abstract

References

  • 1. Milinković N, Ignjatović S, Šumarac Z, et al. Uncertainty of Measurement in Laboratory Medicine. J Med Biochem. 2018;37(3):279-288. doi:10.2478/jomb-2018-0002
  • 2. Bureau International des Poids et Mesures. JCGM 200:2012 International Vocabulary of Metrology—Basic and General Concepts and Associated Terms, 2008 Version with Minor Corrections. 3rd ed.
  • 3. Westgard JO, Westgard SA. Total analytic error. From concept to application. https://www.aacc.org/cln/articles/2013/september/total-analytic-error (Accessed at: 21.02.2022).
  • 4. Ćelap I, Vukasović I, Juričić G, et al. Minimum requirements for the estimation of measurement uncertainty: Recommendations of the joint Working group for uncertainty of measurement of the CSMBLM and CCMB. Biochem Medica. 2017;27(3):030502. doi:10.11613/BM.2017.030502
  • 5. Braga F and Panteghini M. Performance specifications for measurement uncertainty of common biochemical measurands according to Milan models. Clin Chem Lab Med CCLM. 2021;59(8):1362-1368. doi:10.1515/cclm-2021-0170
  • 6. Bureau International des Poids et Mesures. JCGM 100:2008 Evaluation of measurement data — Guide to the expression of uncertainty in measurement, GUM 1995 with minor corrections.
  • 7. ISO 15189:2012. Medical laboratories — Requirements for quality and competence. Geneva: International Organization for Standardization (ISO), 2012.
  • 8. ILAC-G17:01. ILAC Guidelines for Measurement Uncertainty in Testing. International Laboratory Accreditation Cooperation (ILAC). Available from: https://ilac.org/publications-and-resources/ilac-guidance-series/ (Accessed at: 25.02.2022).
  • 9. ISO/TS 20914:2019(E). Medical laboratories — Practical guidance for the estimation of measurement uncertainty. Geneva: International Organization for Standardization (ISO), 2019.
  • 10. Lee JH, Choi JH, Youn JS, et al. Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty. Clin Chem Lab Med CCLM. 2015;53(7). doi:10.1515/cclm-2014-0801
  • 11. Aarsand AK, Fernandez-Calle P, Webster C, et al. The EFLM Biological Variation Database. https://biologicalvariation.eu/ (Accessed at: 06.03.2022).
  • 12. 2024 CLIA Proposed Acceptance Limits for Proficiency Testing. https://www.westgard.com/2024-clia-requirements.htm. (Accessed at: 16.07.2022).
  • 13. Coskun A, Theodorsson E, Oosterhuis WP, et al. Measurement uncertainty for practical use. Clin Chim Acta. 2022; 531:352-360. doi: 10.1016/j.cca.2022.04.1003
  • 14. Plebani M, Sciacovelli L, Bernardi D, et al. What information on measurement uncertainty should be communicated to clinicians, and how? Clin Biochem. 2018; 57:18-22. doi: 10.1016/j.clinbiochem.2018.01.017
  • 15. American Diabetes Association. Standards of Medical Care in Diabetes—2016 Abridged for Primary Care Providers. Clin Diabetes. 2016;34(1):3-21. doi:10.2337/diaclin.34.1.3
  • 16. Chertow GM, Burdick E, Honour M, et al. Acute Kidney Injury, Mortality, Length of Stay, and Costs in Hospitalized Patients. J Am Soc Nephrol. 2005;16(11):3365-3370. doi:10.1681/ASN.2004090740
  • 17. Praught ML and Shlipak MG. Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens. 2005;14(3):265-270. doi: 10.1097/01.mnh.0000165894.90748.72
  • 18. Siri PW and Krauss RM. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr Atheroscler Rep. 2005;7(6):455-459. doi:10.1007/s11883-005-0062-9
  • 19. Kelly AT and Mozayani A. An Overview of Alcohol Testing and Interpretation in the 21st Century. J Pharm Pract. 2012;25(1):30-36. doi:10.1177/0897190011431149
  • 20. Chen H, Zhang L, Bi X, et al. Two Evaluation Budgets for the Measurement Uncertainty of Glucose in Clinical Chemistry. Ann Lab Med. 2011;31(3):167-171. doi:10.3343/kjlm.2011.31.3.167
  • 21. Panteghini M. The simple reproducibility of a measurement result does not equal its overall measurement uncertainty. Clin Chem Lab Med CCLM. 2022;0(0). doi:10.1515/cclm-2022-0618
  • 22. Haeckel R, Wosniok W, Gurr E, et al. Permissible limits for uncertainty of measurement in laboratory medicine. Clin Chem Lab Med CCLM. 2015;53(8). doi:10.1515/cclm-2014-0874
  • 23. Balık AR, Gücel F. Evaluation of 20 clinical chemistry and 12 immunoassay analytes in terms of total analytical error and measurement uncertainty. Scand J Clin Lab Invest. 2021;81(7):517-522. doi:10.1080/00365513.2021.1955294
  • 24. Sandberg S, Fraser CG, Horvath AR, et al. Defining analytical performance specifications: Consensus Statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem Lab Med CCLM. 2015;53(6). doi:10.1515/cclm-2015-0067

Calculation of measurement uncertainty of 20 Clinical Chemistry Analytes according to the practical ISO approach

Year 2023, , 1 - 9, 01.01.2023
https://doi.org/10.31067/acusaglik.1174521

Abstract

Purpose: Measurement Uncertainty (MU) is a valuable tool for evaluating analytical performance and interpreting results in clinical laboratories. The International Organization for Standardization (ISO) has proposed a practical approach for MU calculation in its ISO/TS 20914:2019 guide. This study aimed to calculate the MU values of 20 clinical chemistry analyses per the ISO guideline and compare them with the Maximum expanded allowable measurement uncertainty (MAU) values.
Methods: The study was performed using 6-month internal quality control (IQC) values (uRw) and calibrator uncertainty (ucal) in line with the recommendations of the ISO/TS 20914:2019 guideline. The common MU value was calculated for 20 clinical chemistry tests on two identical devices, Roche Cobas 6000 c501 (Roche Diagnostics, Mannheim, Germany) analyzers. The calculated MU values for the tests were compared with the current MAU values in the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation database (the current Clinical Laboratory Improvement Amendments/CLIA recommendation for Ethanol has been selected).
Results: MU values for Alanine aminotransferase, C-reactive Protein, Iron, Ethanol, Total Bilirubin, Triglyceride, and Blood urea nitrogen remained within the MAU limits. The MU values of the other 13 tests (excluding Aspartate aminotransferase, Glucose, and Potassium Level 2 IQC) exceeded the MAU values.
Conclusion: It was observed that the uRw value affected the MU value the most. Close monitoring and evaluation of uRw and thus IQC and implementation of corrective and preventive actions may reduce MU.

References

  • 1. Milinković N, Ignjatović S, Šumarac Z, et al. Uncertainty of Measurement in Laboratory Medicine. J Med Biochem. 2018;37(3):279-288. doi:10.2478/jomb-2018-0002
  • 2. Bureau International des Poids et Mesures. JCGM 200:2012 International Vocabulary of Metrology—Basic and General Concepts and Associated Terms, 2008 Version with Minor Corrections. 3rd ed.
  • 3. Westgard JO, Westgard SA. Total analytic error. From concept to application. https://www.aacc.org/cln/articles/2013/september/total-analytic-error (Accessed at: 21.02.2022).
  • 4. Ćelap I, Vukasović I, Juričić G, et al. Minimum requirements for the estimation of measurement uncertainty: Recommendations of the joint Working group for uncertainty of measurement of the CSMBLM and CCMB. Biochem Medica. 2017;27(3):030502. doi:10.11613/BM.2017.030502
  • 5. Braga F and Panteghini M. Performance specifications for measurement uncertainty of common biochemical measurands according to Milan models. Clin Chem Lab Med CCLM. 2021;59(8):1362-1368. doi:10.1515/cclm-2021-0170
  • 6. Bureau International des Poids et Mesures. JCGM 100:2008 Evaluation of measurement data — Guide to the expression of uncertainty in measurement, GUM 1995 with minor corrections.
  • 7. ISO 15189:2012. Medical laboratories — Requirements for quality and competence. Geneva: International Organization for Standardization (ISO), 2012.
  • 8. ILAC-G17:01. ILAC Guidelines for Measurement Uncertainty in Testing. International Laboratory Accreditation Cooperation (ILAC). Available from: https://ilac.org/publications-and-resources/ilac-guidance-series/ (Accessed at: 25.02.2022).
  • 9. ISO/TS 20914:2019(E). Medical laboratories — Practical guidance for the estimation of measurement uncertainty. Geneva: International Organization for Standardization (ISO), 2019.
  • 10. Lee JH, Choi JH, Youn JS, et al. Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty. Clin Chem Lab Med CCLM. 2015;53(7). doi:10.1515/cclm-2014-0801
  • 11. Aarsand AK, Fernandez-Calle P, Webster C, et al. The EFLM Biological Variation Database. https://biologicalvariation.eu/ (Accessed at: 06.03.2022).
  • 12. 2024 CLIA Proposed Acceptance Limits for Proficiency Testing. https://www.westgard.com/2024-clia-requirements.htm. (Accessed at: 16.07.2022).
  • 13. Coskun A, Theodorsson E, Oosterhuis WP, et al. Measurement uncertainty for practical use. Clin Chim Acta. 2022; 531:352-360. doi: 10.1016/j.cca.2022.04.1003
  • 14. Plebani M, Sciacovelli L, Bernardi D, et al. What information on measurement uncertainty should be communicated to clinicians, and how? Clin Biochem. 2018; 57:18-22. doi: 10.1016/j.clinbiochem.2018.01.017
  • 15. American Diabetes Association. Standards of Medical Care in Diabetes—2016 Abridged for Primary Care Providers. Clin Diabetes. 2016;34(1):3-21. doi:10.2337/diaclin.34.1.3
  • 16. Chertow GM, Burdick E, Honour M, et al. Acute Kidney Injury, Mortality, Length of Stay, and Costs in Hospitalized Patients. J Am Soc Nephrol. 2005;16(11):3365-3370. doi:10.1681/ASN.2004090740
  • 17. Praught ML and Shlipak MG. Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens. 2005;14(3):265-270. doi: 10.1097/01.mnh.0000165894.90748.72
  • 18. Siri PW and Krauss RM. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr Atheroscler Rep. 2005;7(6):455-459. doi:10.1007/s11883-005-0062-9
  • 19. Kelly AT and Mozayani A. An Overview of Alcohol Testing and Interpretation in the 21st Century. J Pharm Pract. 2012;25(1):30-36. doi:10.1177/0897190011431149
  • 20. Chen H, Zhang L, Bi X, et al. Two Evaluation Budgets for the Measurement Uncertainty of Glucose in Clinical Chemistry. Ann Lab Med. 2011;31(3):167-171. doi:10.3343/kjlm.2011.31.3.167
  • 21. Panteghini M. The simple reproducibility of a measurement result does not equal its overall measurement uncertainty. Clin Chem Lab Med CCLM. 2022;0(0). doi:10.1515/cclm-2022-0618
  • 22. Haeckel R, Wosniok W, Gurr E, et al. Permissible limits for uncertainty of measurement in laboratory medicine. Clin Chem Lab Med CCLM. 2015;53(8). doi:10.1515/cclm-2014-0874
  • 23. Balık AR, Gücel F. Evaluation of 20 clinical chemistry and 12 immunoassay analytes in terms of total analytical error and measurement uncertainty. Scand J Clin Lab Invest. 2021;81(7):517-522. doi:10.1080/00365513.2021.1955294
  • 24. Sandberg S, Fraser CG, Horvath AR, et al. Defining analytical performance specifications: Consensus Statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem Lab Med CCLM. 2015;53(6). doi:10.1515/cclm-2015-0067
There are 24 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Article
Authors

Abdülkadir Çat 0000-0002-9910-5907

Kamil Taha Uçar 0000-0002-5875-5954

Publication Date January 1, 2023
Submission Date September 14, 2022
Published in Issue Year 2023

Cite

EndNote Çat A, Uçar KT (January 1, 2023) Calculation of measurement uncertainty of 20 Clinical Chemistry Analytes according to the practical ISO approach. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 14 1 1–9.