Research Article
BibTex RIS Cite
Year 2023, , 103 - 107, 17.03.2023
https://doi.org/10.31067/acusaglik.1197182

Abstract

References

  • 1. Sinicrope FA. Increasing Incidence of Early-Onset Colorectal Cancer. New England Journal of Medicine. 2022;386:1547–1558. DOI:10.1056/nejmra2200869
  • 2. Mármol I, Sánchez-de-Diego C, Dieste AP, et al. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Vol. 18, International Journal of Molecular Sciences. MDPI AG; 2017. DOI:10.3390/ijms18010197
  • 3. Mouradov D, Sloggett C, Jorissen RN, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014;74:3238–3247. DOI:10.1158/0008-5472.CAN-14-0013
  • 4. Markowitz SD and Bertagnolli MM. Molecular Basis of Colorectal Cancer. New England Journal of Medicine. 2009;361. DOI:10.1056/nejmra0804588
  • 5. García-Alfonso P, Muñoz Martín AJ, Ortega Morán L, et al. Oral drugs in the treatment of metastatic colorectal cancer. Vol. 13, Therapeutic Advances in Medical Oncology. 2021. DOI:10.1177/17588359211009001
  • 6. Huang X mei, Yang Z jie, Xie Q, et al. Natural products for treating colorectal cancer: A mechanistic review. Vol. 117, Biomedicine and Pharmacotherapy. 2019. DOI:10.1016/j.biopha.2019.109142
  • 7. Ali BH and Blunden G. Pharmacological and toxicological properties of Nigella sativa. Vol. 17, Phytotherapy Research. 2003. DOI:10.1002/ptr.1309
  • 8. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, et al. Thymoquinone and its therapeutic potentials. Vols 95–96, Pharmacological Research. 2015. DOI:10.1016/j.phrs.2015.03.011
  • 9. Fadaka A, Ajiboye B, Ojo O, et al. Biology of glucose metabolization in cancer cells. Journal of Oncological Sciences. 2017;3:45–51. DOI:10.1016/j.jons.2017.06.002
  • 10. Biller LH and Schrag D. Diagnosis and treatment of metastatic colorectal cancer: A review. Vol. 325, JAMA - Journal of the American Medical Association. 2021. DOI:10.1001/jama.2021.0106
  • 11. Nobili S, Lippi D, Witort E, et al. Natural compounds for cancer treatment and prevention. Pharmacol Res. 2009;59:365–378. DOI:10.1016/j.phrs.2009.01.017
  • 12. Jafri SH, Glass J, Shi R, et al. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. Journal of Experimental and Clinical Cancer Research. 2010;29:1–11. DOI:10.1186/1756-9966-29-87
  • 13. Imran M, Rauf A, Khan IA, et al. Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine and Pharmacotherapy. 2018;106:390–402. DOI:10.1016/j.biopha.2018.06.159
  • 14. Kundu J, Choi BY, Jeong CH, et al. Thymoquinone induces apoptosis in human colon cancer HCT-116 cells through inactivation of STAT3 by blocking JAK2- and Src-mediated phosphorylation of EGF receptor tyrosine kinase. Oncol Rep. 2014;32. DOI:10.3892/or.2014.3223
  • 15. Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol. 2004;25.
  • 16. El-Far AH, Godugu K, Noreldin AE, et al. Thymoquinone and Costunolide Induce Apoptosis of Both Proliferative and Doxorubicin-Induced-Senescent Colon and Breast Cancer Cells. Integr Cancer Ther. 2021;20. DOI:10.1177/15347354211035450
  • 17. Akram M. Mini-review on glycolysis and cancer. Vol. 28, Journal of Cancer Education. 2013. DOI:10.1007/s13187-013-0486-9
  • 18. Lee YM, Kim GH, Park EJ, et al. Thymoquinone selectively kills hypoxic renal cancer cells by suppressing HIF‐1α‐mediated glycolysis. Int J Mol Sci. 2019;20. DOI:10.3390/ijms20051092
  • 19. Karim S, Burzangi AS, Ahmad A, et al. PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer. Int J Mol Sci. 2022;23. DOI:10.3390/ijms23042305

Antiproliferative Effect of Thymoquinone on Human Colon Cancer Cells: Is It Dependent on Glycolytic Pathway?

Year 2023, , 103 - 107, 17.03.2023
https://doi.org/10.31067/acusaglik.1197182

Abstract

ABSTRACT
Purpose: In the present study, we aimed to investigate the anti-proliferative effect and metabolic activity of thymoquinone (TQ) on colon cancer cells (HCT-116).
Material and Methods: Cell viability was determined by MTT analysis. Cells were treated with different concentrations of TQ (40, 60, 80, 100, 150, and 200 µM) on HCT-116 cells and half-maximal inhibitory concentration (IC50) values were calculated by using the CompuSyn software program. In addition, glucose and lactate concentrations were measured from cell culture supernatants for RPMI medium, control and TQ (IC50 dose) groups. Statistical analyses were performed using GraphPad Prism 7.
Results: Thymoquinone was found to be antiproliferative particularly in 40-200 µM concentrations. The IC50 concentration of TQ was calculated as 68 µM. Glucose levels of supernatants were 478, 384±8.5 and 412±19.7 mg/dL in RPMI medium, control and TQ group, respectively. Lactate levels were found as 20±3.5 µM in the control group and 8±1.1 µM in TQ group.
Conclusion: The present study showed that TQ has an antiproliferative effect on HCT-116 in addition to its inhibitory effect on a glycolytic pathway.

References

  • 1. Sinicrope FA. Increasing Incidence of Early-Onset Colorectal Cancer. New England Journal of Medicine. 2022;386:1547–1558. DOI:10.1056/nejmra2200869
  • 2. Mármol I, Sánchez-de-Diego C, Dieste AP, et al. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Vol. 18, International Journal of Molecular Sciences. MDPI AG; 2017. DOI:10.3390/ijms18010197
  • 3. Mouradov D, Sloggett C, Jorissen RN, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014;74:3238–3247. DOI:10.1158/0008-5472.CAN-14-0013
  • 4. Markowitz SD and Bertagnolli MM. Molecular Basis of Colorectal Cancer. New England Journal of Medicine. 2009;361. DOI:10.1056/nejmra0804588
  • 5. García-Alfonso P, Muñoz Martín AJ, Ortega Morán L, et al. Oral drugs in the treatment of metastatic colorectal cancer. Vol. 13, Therapeutic Advances in Medical Oncology. 2021. DOI:10.1177/17588359211009001
  • 6. Huang X mei, Yang Z jie, Xie Q, et al. Natural products for treating colorectal cancer: A mechanistic review. Vol. 117, Biomedicine and Pharmacotherapy. 2019. DOI:10.1016/j.biopha.2019.109142
  • 7. Ali BH and Blunden G. Pharmacological and toxicological properties of Nigella sativa. Vol. 17, Phytotherapy Research. 2003. DOI:10.1002/ptr.1309
  • 8. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, et al. Thymoquinone and its therapeutic potentials. Vols 95–96, Pharmacological Research. 2015. DOI:10.1016/j.phrs.2015.03.011
  • 9. Fadaka A, Ajiboye B, Ojo O, et al. Biology of glucose metabolization in cancer cells. Journal of Oncological Sciences. 2017;3:45–51. DOI:10.1016/j.jons.2017.06.002
  • 10. Biller LH and Schrag D. Diagnosis and treatment of metastatic colorectal cancer: A review. Vol. 325, JAMA - Journal of the American Medical Association. 2021. DOI:10.1001/jama.2021.0106
  • 11. Nobili S, Lippi D, Witort E, et al. Natural compounds for cancer treatment and prevention. Pharmacol Res. 2009;59:365–378. DOI:10.1016/j.phrs.2009.01.017
  • 12. Jafri SH, Glass J, Shi R, et al. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. Journal of Experimental and Clinical Cancer Research. 2010;29:1–11. DOI:10.1186/1756-9966-29-87
  • 13. Imran M, Rauf A, Khan IA, et al. Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine and Pharmacotherapy. 2018;106:390–402. DOI:10.1016/j.biopha.2018.06.159
  • 14. Kundu J, Choi BY, Jeong CH, et al. Thymoquinone induces apoptosis in human colon cancer HCT-116 cells through inactivation of STAT3 by blocking JAK2- and Src-mediated phosphorylation of EGF receptor tyrosine kinase. Oncol Rep. 2014;32. DOI:10.3892/or.2014.3223
  • 15. Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol. 2004;25.
  • 16. El-Far AH, Godugu K, Noreldin AE, et al. Thymoquinone and Costunolide Induce Apoptosis of Both Proliferative and Doxorubicin-Induced-Senescent Colon and Breast Cancer Cells. Integr Cancer Ther. 2021;20. DOI:10.1177/15347354211035450
  • 17. Akram M. Mini-review on glycolysis and cancer. Vol. 28, Journal of Cancer Education. 2013. DOI:10.1007/s13187-013-0486-9
  • 18. Lee YM, Kim GH, Park EJ, et al. Thymoquinone selectively kills hypoxic renal cancer cells by suppressing HIF‐1α‐mediated glycolysis. Int J Mol Sci. 2019;20. DOI:10.3390/ijms20051092
  • 19. Karim S, Burzangi AS, Ahmad A, et al. PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer. Int J Mol Sci. 2022;23. DOI:10.3390/ijms23042305
There are 19 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Mete Özkoç 0000-0003-3557-4349

Ergul Mutlu Altundag 0000-0001-5355-4654

Publication Date March 17, 2023
Submission Date November 2, 2022
Published in Issue Year 2023

Cite

EndNote Özkoç M, Mutlu Altundag E (March 1, 2023) Antiproliferative Effect of Thymoquinone on Human Colon Cancer Cells: Is It Dependent on Glycolytic Pathway?. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 14 2 103–107.