BibTex RIS Kaynak Göster

Roles of Choline On Central and Peripheral Cholinergic Neurons and Cholinergic Neurotransmission

Yıl 2010, Sayı: 2, 68 - 80, 01.06.2010

Öz

Choline, a quaternary amine, is an essential precursor for the neurotransmitter acetylcholine ACh and the major membrane constituent phosphatidylcholine PC . Choline is also metabolized to betaine, which provides a source of methyl groups for the regeneration of methionine and S-adenosylmethionine. The present review will mainly focus on the roles of choline on cholinergic neuronal functions. The main source of free choline for cholinergic neurons to synthesize acetylcholine is blood circulation. Plasma choline concentrations can vary over a six-fold range 10- 60 μM depending on the choline contents of the foods ingested. Choline concentrations in the circulation can increase up to 200-500 μM following treatment with pharmacological doses of choline. Since choline acetyltransferase [ChAT] , the enzyme that converts choline to ACh, is poorly saturated with its choline substrate, increases in plasma choline can enhance the formation and the release of ACh. Choline, at sufficiently high concentrations i.e., at 0,5-100 mM , aslo interacts with muscarinic and nicotinic acetylcholine receptors as an agonist. Choline treatments result with increases in neurotransmitter acetylcholine synthesis and release, and enhancements in central and peripheral muscarinic and nicotinic cholinergic neurotransmission. Choline produces several physiological, pharmacological and neurochemical effects in cholinergic nature which will be discussed here

Kaynakça

  • Strecker A. Uber eingige neue bestandtheile der schweingalle. Ann Chem Pharmacie 1862; 183: 964-965.
  • Best CH, Huntsman ME. The effect of the components of lecithine upon deposition of fat in the liver. J Physiol 1932; 75: 405-412.
  • Quastel JH, Tennenbaum M, Wheatley AHM. Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem J 1936; 30: 1668-1681.
  • CohenE.L, Wurtman RJ. Brain acetylcholine: Increase after systemic choline administration. Life Sci 1975; 16: 1095-1102.
  • Cohen EL, Wurtman RJ. Brain acetylcholine: control by dietary choline. Science 1976; 191: 561-562.
  • Ulus IH, Wurtman,RJ. Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain. Science 1976; 94: 1060-1061.
  • Institute of Medicine, National Academy of Science, USA. 1998. Choline. Pages: 390-422, in: Dietary Reference Intakes for Folate, Thiamine, Riboflavin, Niacin, Vitamin B12, Panthothenic Acid, Biotin, and Choline, Natl. Acad. Press, Washington DC.
  • Benishin CG, Carroll PT. Multiple forms of choline-O-acetyltransferase in mouse and rat brain: solubilization and characterization. J Neurochem 1983; 41:1030-1039.
  • Salem N, Medilanski J, Pellegrinelli N, Eder-Colli L. Hydrophilic and amphiphilic forms of Drosophilia choline acetyltransferase are encoded by a single mRNA. Eur J Neurosci 1994; 6: 737-745.
  • Pahud G, Salem N, Van de Goor J, Medilanski J, Pellegrinelli N, Eder-Colli L. Study of subcellular localization of membrane-bound choline acetyltransferase in Drosophilia central nervous system and its association with membranes. Eur J Neurosci 1998; 10: 1644-1653.
  • Pahud G, Medilanski J, Eder-Colli L. Cytosolic choline acetyltransferase binds specifically to cholinergic plasma membrane of rat brain synaptosomes to generate membrane-bound enzyme. Neurochem Res 2003;28: 543-549.
  • Rossier J. Acetyl-coenzyme A and coenzyme A analogues. Their effects on rat brain choline acetyltransferase. Biochem J 1977; 165: 321-326.
  • Hirsch MJ, Growdon JH, Wurtman RJ. Relations between dietary choline or lecithin intake, serum choline levels, and various metabolic indices. Metabolism 1978; 27: 953-960.
  • Zeisel SH, Growdon JH, Wurtman RJ, Magil SG, Logue M. Normal plasma choline responses to ingested lecithin. Neurology 1980; 30: 1226-1229.
  • Savendahl L, Mar MH, Underwood LE, Zeisel SH. Prolonged fasting in humans results in diminished plasma choline concentrations but does not cause liver dysfunction. Am. J. Clin. Nutr. 1997; 66: 622-625.
  • Zeisel SH, Da Costa K-A, Franklin PD, Alexander EA, Lamont JT, Sheard NF, Beiser A. FASEB J 1991; 2093-2098.
  • Ilcol YO, Uncu G, Ulus IH. Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch Physiol Biochem 2002; 110: 393-399.
  • Ilcol YO, Ozbek R, Hamurtekin E, Ulus IH. Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem 2005; 16: 489-499.
  • Ilcol YO, Dilek K, Yurtkuran M, Ulus IH. Changes of plasma free choline and choline-containing compounds` concentrations and choline loss during hemodialysis in ESRD patients. Clin Biochem 2002; 35: 233-239.
  • Ilcol YO, Donmez O, Yavuz M, Dilek K, Yurtkuran M, Ulus IH. Free choline and phospholipid-bound choline concentrations in serum and dialysate during peritoneal dialysis in children and adults. Clin. Biochem. 2002; 35: 307-313.
  • Buchman AL, Jenden D, Suki WN, Roch M. Changes in plasma free and phospholipid-bound choline concentrations in chronic hemodialysis patients. J Renal Nutr 2000; 10: 133-138.
  • Rennick B, Acara M, Hysert P, Mookerjee B. Choline loss during hemodialysis: homeostatic control of plasma choline concentrations. Kidney Int 1976; 10: 329-335.
  • Ulus IH, Ozyurt G, Korfali E. Decreased serum choline concentrations in humans after surgery, childbirth, and traumatic head injury. Nurochem Res. 1998; 23: 727-732.
  • Ilcol YO, Ozyurt G, Kilicturgay S, Uncu G, Ulus IH. The decline in serum choline concentration in humans during and after surgery is associated with elevation of cortisol, adrenocorticotropic hormone, prolactin and β-endorphin concentrations. Nurosci Lett 2002; 324: 41-44.
  • Ilcol YO, Uncu G, Goren S, Sayan E, Ulus IHDeclines in serum free choline and bound choline concentrations in humans after three different types of major surgery. Clin Chem Lab Med 2004; 42: 1390-1395.
  • Ilcol YO, Basagan-Mogol E, Cengiz M, Ulus IH. Elevation of serum cerebral injury markers correlates with serum choline decline after coronary artery bypass grafting surgery. Clin Chem Lab Med 2006; 44: 471-478.
  • IlcolYO, Yilmaz Z, Ulus IH. Serum free and phospholipid-bound choline decrease after surgery and methylprednisolone administration in dogs. Neurosci Lett 2003; 339: 195-198.
  • Conlay LA, Wurtman RJ, Blusztajn JK, Coviella IL, Maher TJ, Evoniuk GE. Decreased plasma choline concentrations in marathon runners. New Eng. J. Med. 1986; 315: 892.
  • Buchman AL, Jenden D, Roch M. Plasma free, phospholipid-bound and urinary free choline all decrease during a marathon run and may be associated with impaired performance. J Am Col Nitr 1999;18: 598-601.
  • Danne O, Lueders C, Storm C, Frei U, Mockel M. Whole-blood hypercholinemia and coronary instability and trombosis. Clin Chem 2005; 51: 1315- 1317.
  • Sandmann J, Wurtman RJ. Phospholipase D and Phospholipase C in human cholinergic neuroblastoma (LA-N-2) cells: Modulation by muscarinic agonists and protein kinase C. In: Nishizuka, Y., Endo, M., and Tanaka C. (eds.), Biology and Medicine of Signal Transduction, Raven Press, New York, 1990; : 176-181
  • Sandmann J, Peralta EG, Wurtman RJ. Coupling of transfected muscarinic acetylcholine receptor subtypes to phospholipase D. J Biol Chem 1991; 266: 6031-6034.
  • Sandmann J, Wurtman RJ. Stimulation of phospholipase D activity in human neuroblastoma (LA-N-2) cells by activation of muscarinic acetylcholine receptors
  • or by phorbol esters: relationship to phosphoinositide turnover. J. Neurochem. 1991; 56: 1312-1319.
  • Ulus IH, Wurtman RJ, Mauron C, Blusztajn JK. Choline increases acetylcholine release and protects against the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res 1989; 484: 217-227.
  • Farber SF, Savci V, Wei A, Slack BE, Wurtman RJ. Choline’s phosphorylation in rat striatal slices is regulated by the activity of cholinergic neurons. Brain Res 1996: 723: 90-99.
  • Crews FT, Hirata F, Axelrod J. Identification and properties of methyltransferases that synthesize phosphatidylcholine in rat brain synaptosomes. J Neurochem 1980;34: 1491-1498.
  • Yamamura HI, Snyder SH. Choline: high-affinity uptake by rat brain synaptosomes. Science 1972;178: 626-628.
  • Yamamura HI, Snyder SH. High affinity transport of choline into synaptosomes of rat brain. J Neurochem 1973; 21: 1355-1374.
  • Kuhar MJ, Murrin LC. Sodium-dependent high-affinity choline uptake. J Neurochem 1978; 30: 15-21.
  • Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I. Identification and characterization of the high-affinity choline transporter. Nat Neurosci 2000; 3: 120-125.
  • Okuda T, Haga T. High-affinity choline transporter. Neurochem Res 2003; 28: 483-488.
  • Haberberger RV, Pfeil U, Lips KS, KummerW. Expression of the high-affinity choline transporter, CHT1, in the neuronal and non-neuronal cholinergic system of human and rat skin. J Invest Dermatol 2002;119: 943-948.
  • Misawa H, Nakata K, Matsuura J, Nagao M, Okuda T, Haga T. Distribution of the high-affinity choline transporter in the central nervous system of the rat. Neuroscience 2001; 105: 87-98.
  • Kus L, Borys E, Chu YP, Ferguson SM, Blakely RD, Emborg ME, Kordower JH, Levey AI, Mufson, EJ. Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system. J Comp Neurol 2003; 436: 341-357.
  • Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, Yi, H, Levey AI, Blakely RD. Vesicular localization and activity- dependent trafficking of presynaptic choline transporters. J Neurosci 2003; 23: 9697-9709.
  • Haga T, Noda H. Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta 1973; 291: 564-575.
  • O’Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM. An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins. Proc Natl Acad Sci USA 2000; 97: 1835-1840.
  • Inazu M, Takeda H, Matsumiya T. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes. J Neurochem 2005; 94: 1427-1437.
  • Pardridge WM, Oldendorf WH. Transport of metabolic substrates through the blood-brain barrier. J Neurochem 1977; 28: 5-12.
  • Pardridge WM. Blood-brain barrier transport of nutrients. Fed Proc1986; 45: 2047-2049.
  • Klein J, Koppen A, Loffelholz K. Small rises in plasma choline reverse the negative arteriovenous difference of brain choline. J Neurochem 1990; 55: 1231-1236.
  • Ulus IH, Millington WR, Buyukuysal RL, Kiran BK. Choline as an agonist: determination of its agonistic potency on cholinergic receptors. Biochem Pharmacol. 1988; 37: 2747-2755.
  • Ilcol YO, Gurun MS, Taga Y, Ulus IH. Intraperitoneal administration of choline increases serum glucose in rat: involvement of the sympathoadrenal system. Horm Metab Res 2002; 34: 341-347.
  • Ilcol YO, Gurun MS, Taga Y, Ulus IH. Choline increases serum insulin in rat when injected intraperiotenally and augments basal and stimulated acetylcholine release from the rat minced pancreas in vitro. Eur J Biochem 2003; 270: 991-999.
  • Klein J, Gonzales R, Koppen A, Loffelholz,K. Free choline and choline metabolites in rat brain and body fluids: sensitive determination and implications for choline supply to the brain. Neurochem Int 1993; 22: 293-300.
  • Klein J, Koppen A, Loffelholz K. Regulation of free choline in rat brain: Dietary and pharmacological manipulations. Neurochem Int 1998; 32: 479- 485.
  • Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport. A role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem 2001; 276: 41611-41619.
  • Johnson DA, Ulus IH, Wurtman RJ. Caffeine potentiates the enhancement by choline of striatal acetylcholine release. Life Sci 1992; 51: 1597
  • Buyukuysal RL, Ulus IH, Aydin S, Kiran BK. 3,4-diaminopyridine and choline increase in vivo acetylcholine release in rat striatum. Eur J Pharmacol 1995; 281: 179-185.
  • Ulus IH, Buyukuysal RL, Wurtman RJ. N-Methyl-D-Aspartate increases acetylcholine release from rata striatum and cortex: Its effect is augmented by choline. J Pharmacol Exp Ther 1992; 261: 1122-1128.
  • Ulus IH, Watkins CJ, Cansev M, Wurtman RJ. Cytidine and uridine increase striatal CDP-Choline levels without decreasing acetylcholine synthesis or release. Cell. Mol. Neurobiol. 2006; 26: 563-577.
  • Ulus IH, Hirsch M J, Wurtman R J. Trans-synaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: evidence that choline administration can increase cholinergic neurotransmission. Proc Natl Acad Sci USA. 1977; 74: 798-800.
  • Ulus I H, Scally MC, Wurtman R J. Choline potentiates the induction of adrenal tyrosine hydroxylase by reserpine, probably by enhancing the release of acetylcholine. Life Sci 1977; 21:145-148.
  • Ulus IH, Scally MC, Wurtman RJ. Enhancement by choline of the induction of adrenal tyrosine hydroxylase by phenoxybenzamine, 6- hydroxydopamine, insulin or exposure to cold. J Pharmacol Exp Ther 1978; 204: 676-682.
  • Ulus IH, Wurtman R J. Selective response of rat peripheral sympathetic nervous system to various stimuli. J Physiol 1979; 293: 513-523.
  • Scally MC, Ulus IH, Wurtman RJ. Choline administration to the rat increases urinary catecholamines. J Neural Transm 1978; 43: 103-112.
  • Birks RI, MacIntosh FC. Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 1961;39: 787-827.
  • Parducz A, Kiss Z, Joq F. Changes of the phosphatidylcholine content and the number of synaptic vesicles in relation to the neurohumoral transmission in sympathetic ganglia. Experientia 1976; 32: 1520-1521.
  • Parducz A, Joo F, Toldi J. Formation of synaptic vesicles in the superior cervical ganglion of cat: choline dependency. Exp Brain Res 1986;63: 221-224.
  • Kuntscherova J. Effect of short-term starvation and choline on the actylcholine content of organs of albino rats. Physiol Bohemoslov 1972; 21: 655-660.
  • Haubrich DR, Wedeking PW, Wang PFL. Increase in tissue concentration of choline in guinea pigs in vivo induced by administration of choline. Life Sci 1974; 14: 921-927.
  • Dieterich HA, Lindmar R, Loffelholz K. The role of choline in the release of acetylcholine in isolated hearths. Nauny-Schmiedeberg’s Arch Pharmacol1978; 301: 207-215.
  • Meyer EM, Baker S P. Effects of choline augmentation on acetylcholine release in rat atrial minces. Life Sci 1986; 39: 1307-1315.
  • Hutter F. Effect of choline on neuromuscular transmission in the cat. J Physiol. (London) 1952; 117: 241-250.
  • Bierkamper GG, Goldberg AM The effect of choline on the release of acetylcholine from the neuromuscular junction. In: Barbeau, A., Growdon, J.H., and Wurtman, R.J. (eds.), Nutrition and the Brain, Vol. 5, Raven Press, New York, 1979; 243-251
  • Bierkamper GG, Goldberg AM. Release of acetylcholine from the vascular perfused rat phrenic nerve-hemidiaphragm. Brain Res 1980; 202: 234- 247.
  • Del Castillo J, Katz B. Interaction at end-plate receptors between different choline derivaties. Proc R Soc Lond B Bio. Sci 1957; 146: 369-381.
  • Bacq ZM, Brown GL. Pharmacological experiments on mammalian voluntary muscle, in relation to the theory of chemical transmission. J Physiol (London) 1937; 89: 45-60.
  • Chang HC, Gaddum JH. Choline esters in tissue extracts. J Physiol (London) 1933; 79: 255-285.
  • Dale, HH.. The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 1914; 6: 147-190.
  • Feldberg W, Vartiainen A. Further observation on the physiology and pharmacology of a sympathetic ganglion. J Physiol (London) 1934; 83: 103-128.
  • Krstic, M.K. 1972. The action of choline on the superior cervical ganglion of the cat. Eur. J. Pharmacol. 17: 87-96.
  • Krnjevic K, Reinhardt W. Choline excites cortical neurons. Science 1979;205: 1321-1322.
  • Kilbinger H, Kruel R. Choline inhibits acetylcholine release via presynaptic muscarine receptors. Naunyn Schmiedebergs Arch Pharmacol 1981; 316: 131-134.
  • Huang S, Lin Q. Functional expression and processing of rat choline dehydrogenase precursor. Biochem Biophys Res Commun 2003; 309: 344- 350.
  • Carriere JL, El-Fakanay EE. Choline is a full against in inducing activation of neuronal nitric oxide synthase via the muscarinic M1 receptor. Pharmacology 2000; 60: 82-89.
  • Holz RW, Senter RA. Choline stimulates nicotinic receptors on adrenal medullary chromaffin cells to induce catecholamine secretion. Science 1981; 214: 466-468.
  • Alkondon M, Pereira EFR, Cortes WS, Maelicke A, Albuquergue EX. Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 1997; 9: 2734-2742.
  • Alkondon M, Albuquerque EX. Subtype-specific inhibition of nicotinic acetylcholine receptors by choline: A regulatory pathway. Pharmacol Exp Ther 2006; 318: 268-275.
  • Mandelzys A, De Koninck P, Cooper E. Agonist and toxin sensitivities of ACh-eveoked currents on neurons expressing multiple nicotinic subunits. J Neurophysiol 1995; 74: 1212-1221.
  • Papke RL, Bencherif M, Lippiello P. An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compunds indicates that choline is selective for the alpha7 subtype. Neurosci Lett 1996; 213: 201-204.
  • Zwart R, Vijverberg HP. Potentiation and inhibition of neuronal alpha4beta4 nicotinic acetylcholine receptors by choline. Eur J Pharmacol 2000; 393: 209-214.
  • Steigmann F, Firestein R, De La Huerga J. Intravenous choline therapy. Fed Proc 1952; 11: 393.
  • Singh GS. Action of choline the rat blood pressure. Indian J Physiol Pharmacol 1973; 17: 125.
  • SavciV, Goktalay G, Cansev M, Cavun S, Yilmaz SM, Ulus IH. Intravenously injected CDP-choline increases blood pressure and reverses hypotension in haemorrhagic shock: effect is mediated by central cholinergic activation. Eur J Paharmacol 2003; 468: 129-139.
  • Cansev M, Yilmaz MS, Ilcol YO, Hamurtekin E, Ulus IH. Cardiovascular effects of CDP-choline and its metabolites: involvement of peripheral autonomic nervous system. Eur J Pharmacol 200/; 577: 129-142.
  • Ulus I H, Arslan Y, Tanrisever R, Kiran B K. Postsynaptic effects of choline administration. In: Barbeau, A., Growdon, J. H. and Wurtman, R. J. (eds.), Nutrition and the Brain, Vol. 5, Raven Press, New York, 1979;: 219-226.
  • Boyd WD, Graham-White J, Blackwood G, Glen I, McQueen J. Clinical effects of choline in Alzheimer senile dementia. Lancet 1977; 2: 711.
  • Srimal RC, Jaju BP, Sinha JN, Dixit KS, Bhargava KP. Analysis of the central vasomotor effects of choline. Eur J Pharmacol 1969; 5: 239-244.
  • Kubo T, Misu Y. Blood pressure response to intracisternal administration of choline. Jpn J Pharmacol 1981;31: 839-841.
  • Kubo T, Misu Y. Cardiovascular response to microinjection of physiostigmine and choline into the dorsal medullary site of the rat. Neuropharmacology 1981;20: 1091-1095.
  • Caputi AP, Brezenoff HE. Cardiovascular effects produced by choline injected into the lateral cerebral ventricle of the unanesthetized rat. Life Sci 1980; 26:1029-1036.
  • Arslan BY, Ulus IH, Savci V, Kiran B K. Effects of intracerebroventricular injected choline on cardiovascular functions and sympathoadrenal activity. J Cardiovasc Pharmacol 1991;17: 814-821.
  • Isbil-Buyukcoskun N, Gulec G, Ozluk K, Ulus, IH. Central injection of captopril inhibits the blood pressure response to intracerebroventricular choline. Braz J Med Biol Res 2001; 34: 815-820.
  • Li XD, Buccafusco JJ. Role of α7 nicotinic acetylcholine receptors in the pressor response to intracerebroventricular injection of choline: blockade by amyloid peptide Aβ1-42. J Pharmacol Exp Ther 2004; 309: 1206-1212.
  • Altura BA. Role of spleen in choline stimulation of reticoendothelial system and resistance to acute haemorrhage. Proc Soc Exp Biol Med 1978;158: 77-80.
  • Ulus IH, Arslan BY, Savci V, Kiran BK. Restoration of blood pressure by choline treatment in rats made hypotensive by haemorrhage. Br J Pharmacol 1995; 116: 1911-1917.
  • Savci V, Cavun S, Goktalay G, Ulus IH. Cardiovascular effects of intracerebroventricularly injected CDP-choline in normotensive and hypotensive animals: the involvement of cholinergic system. Naunyn-Schmiedeberg’s Arch Paharmacol 2002; 365: 388-398.
  • Savci V, Goktalay G, Ulus IH. Intracerebroventricular choline increases plasma vasopressin and augments plasma vasopressin response to osmotic stimulation and hemorrhage.Brain Res 2002; 942:58-70.
  • Isbil-Buyukcoskun N, Ilcol YO, Cansev M, Hamurtekin E, Ozluk K, Ulus IH. Central choline supresses plasma renin response to graded haemorrhage. Clin Exp Phar Physiol 2008; 35: 1023-1031.
  • Gurun MS, Millington WR, Ulus IH. Choline potentiates the pressor response evoked by glycyl-glutamine or naloxone in haemorrhaged rats. Clin Exp Pharmacol Physiol 2003;30: 640-642.
  • Savci V, Ulus IH. Choline administration reverses hypotension in spinal cord transected rats: the involvement of vasopressin. Neurochem Res 1998; 23: 733-741.
  • Savci,V, Ulus IH. Central choline reverses hypotension caused by alpha-adrenoceptor or ganglion blockade in rats: the role of vasopressin. Eur J Pharmacol 1996; 311: 153-161.
  • Gurun MS, Savci V, Ulus IH. Intracerebroventricular choline reverses hypotension induced by acute chemical sympathectomy. J Auton Pharmacol 1997; 17: 155-163.
  • Ilcol YO, Yilmaz Z, Ulus IH. Endotoxin alters serum free choline and phospholipid-bound choline concentrations, and choline administration attenuates endotoxin-induced organ injury in dogs. Shock 2005; 24: 288-293.
  • Rivera CA, Wheeler MD, Enomoto N, Thurman RG. A choline-rich diet improves survival in a rat model of endotoxic shock. Am J. Physiol 1998; 275: G862-G867.
  • Ilcol YO, Yilmaz Z, Cansev M, Ulus IH. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: Involvement of the peripheral nicotinic acetylcholine receptors. Shock 2009; 32: 286-294.
  • Yilmaz Z, Ilcol YO, Torun S, Ulus IH. Intravenous administration of choline or CDP-choline improves platelet count and platelet closure times in endotoxin-treated dogs. Shock 2006;25: 73-79.
  • SavciV, Ulus IH. Cardiovascular effects of central choline during endotoxin shock in the rat. J Cardiovasc Pharmacol 1997; 30: 667-675.
  • Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang L-H, Hudson L, Lin X, Patel N, Johnson SM, Chavan S, Goldstein RS,, Czura CJ, Miller E, Al-Abed Y, Racey KJ, Pavlow V. Modulation of TNF release by choline requires a7 subunit nicotinic acetylcholine receptor- mediated signaling. Mol Med 2008; 14: 567-574.
  • Unal CB, Demiral Y, Ulus IH. The effects of choline on body temperature in conscious rats. Eur J Pharmacol 1998; 363: 121-126.
  • Botticelli LJ, Lytle LD, Wurtman RJ. Choline-induced attenuation of morphine analgesia in the rat. Commun Psychopharmacol 1977; 1: 519-523.
  • Damaj MI, Meyer EM, Martin BR. The antinociceptive effects of alpha7 nicotinic agonists in an acute pain model. Neuropharmacology 2000; 39: 2785-2791.
  • Wang Y, Su D-M, Wang R.-H, Liu Y, Wang H. Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience 2005; 132: 49- 56.
  • Hamurtekin E, Gurun MS. The antinociceptive effects of centrally administered CDP-choline on acute pain models in rats: The involvement of cholinergic system. Brain Res. 2006; 1117: 92-100.
  • Cansev M, Ilcol YO, Yilmaz MS, Hamurtekin E, Ulus IH. Peripheral administration of CDP-choline, phosphocholine or choline increases plasma adrenaline and noradrenaline concentrations. Autonom Autacoid Pharmacol 2008; 28: 41-58.
  • Savci V, Gurun MS. Ulus IH, Kiran BK. Effect of intracerebroventricularly injected choline on plasma ACTH and beta-endorphin levels in conscious rats. Eur J Pharmacol 1996; 309: 275-280.
  • Gurun MS, Savci V, Ulus IH, Kiran BK. Centrally administered choline increases plasma prolactin levels in conscious rats. Neurosci. Lett. 1997; 232: 79-82.
  • Gurun,M.S, Ilcol YO, Taga Y, Ulus IH. Hyperglycemia induced by intracerebroventricular choline: involvement of the sympatho-adrenal system. Eur J Pharmacol 2002; 438: 197-205.
  • Ladd SL, Sommer SA, LaBerge S, Toscana W. Effect of phosphatidylcholine on explicit memory. Clin Neuropharmacol 1993; 16: 540-549.
  • Leathwood PD, Heck E, Mauron J. Phosphatidylcholine and avoidance performance in 17 month old SEC/1ReJ mice. Life Sci 1982; 30: 1065- 1070.
  • Davis KL, Mohs RC, Tinklenberg LA, Hollister LE. Pfefferbaum A, Kopell BS. Cholinomimetics and memory: effect of choline chloride. Arch. Neurol. 1980; 37: 49-51.
  • Harris CM, Dysken MW, Fovall P, Davis JM. Effect of lecithin on memory in normal adults. Am J Psych 1983; 140: 1010-1012.
  • Kopf SR, Bucholzer ML, Hilgert M, Loffelholz K, Klein J. Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release. Neuroscience 2001; 103: 365-371.
  • Bartus RT, Dean RL, Goas JA, Lippa AS. Age-related changes in passive avoidance retention: modulation with dietary choline. Science 1980; 209: 301-303.
  • Meck WM, Smith RA, Williams CL. Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev Psychobiol 1988; 21: 339-353.
  • Meck WM, Williams CL.Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 1997;8: 2831-2835.
  • Tees RC, Mohammadi E. The effects of neonatal choline dietary supplementation on adult spatial and configural learning and memory in rats. Dev Psychobiol 1999; 35: 226-240.
  • Holmes GL, Yang Y, Liu Z, Cermak JM, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res 2002; 48: 3-13.
  • Thomas JD, Garrison M, O’Neill TM. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 2004;26: 35-45.
  • Ryan SH, Williams JK, Thomas JD. Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res 2008; 1237: 91-100.
  • Thomas JD, Abou EJ, Dominguez HD. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol Teratol 2009; 31: 303-311.
  • Glenn Mj, Gibson EM, Kirby ED, Mellott TJ, Blusztajn JK, Williams CL. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experinces in adult female rats. Eur J Neurosci 2007; 25: 2473-2482.
  • Meck WH, Williams CL. Metabolic imprinting of choline by its vailability during gestation: implicatipns for memory and attentional processing across the life span. Neurosci Biobehav Rev 2003; 27: 385-399.
  • Ross RG, Stevens KE, Proctor WR, Leonard S, Kisley MA, Hunter SK, Freedman R, Adams CE. Research review: cholniergic mechanisms, early brain development, and risk for schizophrenia. J Child Psychol Psychiatry 2009; (18 Kasımda önceden basılmış).
  • Barrantes FJ, Borroni V, Valles S. Neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in Alzheimer’s disease. FEBS Letters 2009; (13 Kasımda önceden basılmış).
  • Guo-Ross SX, Clark S, Montoya DAC, Jones KH, Obernier J, Shetty AK, White AM, Blusztajn JK, Wilson WA, Swartzwelder HS. Prenatal choline supplementation protects against postnatal neurotoxicity. J Neurosci 2002; 22: RC195.
  • Yang Y, Liu Z, Cermak JM, Tandon P, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK, Holmes GL. Protective effects of prenatal choline supplementation on seizure-induced memory impairment. J Neurosci 2000; 20: RC109.
  • Yang B, Lin H, Xu C, Liu Y. Wang H, Han H, Wang Z. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac M3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem 2005; 16: 163-174.
  • Jonnala RR, Graham III JH, Terry AV, Beach JW, Young JA, Buccafusco JJ. Relative levels of cytoprotection produced by analogs of choline and the role of alpha7-nicotinic acetylcholine receptors. Synapse 2003; 47: 262-269.
  • Strahlendorf JC, Acosta S, Miles R, Strahlendorf HK. Choline blocks AMPA-induced dark cell degeneration of Purkinje neurons: potential role of the α7 nicotinic receptor. Brain Res 2001; 901: 71-78.
  • Murakami H, Ohkura A, Takanaga H, Matsuo H, Koyabu N, Naito M, Tsuruo T, Ohtani H, Sawada Y. Functional characterization of adenosine transport across the BBB in mice. Int J Pharm 2005; 290: 37-44.
  • Pinsky C, Frederickson RCA, Vazquez AJ. Morphine withdrawal syndrome responses to cholinergic antagonists an to apartial cholinergic agonist. Nature 1973; 242: 59-60.
  • Frederickson RCA, Pinsky C. Effects of cholinergic and anticholinergic drugs and a partial cholinergic agonist on the development and expression of physical dependence on morphine in rats. J Pharmacol Exp Ther 1975; 193: 44-55.
  • Wecker L, Rothermal S, Cawley G. Chronic choline supplementation attenuates the behavioral effects of pentobarbital. Pharmacol Biochem Behav 1987; 28: 469-475.
  • Coutcher JB, Cawley G, Wecker L. Dietary choline supplementation increases the density of nicotine binding sites in rat brain. J Pharmacol Exp Ther 1992; 262: 1128-1132.
  • Morley BJ, Garner LL. Increases in the concentration of brain alpha-bungarotoxin binding sites induced by dieatary choline are age dependent. Brain Res 1986; 378: 315-319.
  • Wecker L, Flynn CJ. Stouse MR, Trommer BA. Choline availability: effects on the toxicity of centrally active drugs. Drug Nutr Interact1982;1: 125
  • Miller LG, Greenblatt DJ, Roy RB, Lopez F, Wecker L. Dietary choline intake modulates benzodiazepine receptor binding and γ-aminobutyric acidA receptor function in mouse brain. J Pharmacol Exp Ther 1989; 248: 1-6.

Kolin’in Merkezi ve Periferik Kolinerjik Nöronlarda ve Kolinerjik İletimdeki İşlevi

Yıl 2010, Sayı: 2, 68 - 80, 01.06.2010

Öz

Kolin bir kuaterner amin olup, nörotrasmitter asetilkolinin ve membranın temel yapılarından fosfotidilkolin’in öncül maddesidir. Kolin ayrıca vücutta, metionin ve s-adenosilmetionin rejenerasyonu için gerekli metil guruplarının vericisi olan, betaine de metabolize olur. Bu derlemede esas olarak kolin’in cholinergic noronal görevlerindeki rolü üzerinde durulacaktır. Kolinerjik nöronların asetilkolin sentezi için kulandıkları kolin esas olarak kaynağı dolaşımdır. Dolaşımdaki kolin’in düzeyi 6-8 saatlik açlık sonrası 10 μM kadardır. Bu düzey yemek sonrası, gıdalardaki kolin‘in miktarına göre, 20-60 μM kadar yükselebilir. Farmakolojik dozlarda tedavi ile de kan kolin düzeyi 200-300 μM kadar yükselebilir. Kolin’i asetilkoline dönüştüren enzim kolinasetiltrasferaz enzimi substratı kolini zayıf bir şekilde doyurulmuş olduğundan plazmada kolin düzeyinin yükselmesi asetilkolin sentezini arttırır. Kolin, yeterince yüksek düzeylerinde 0,5-100 mM gibi , muskarinik ve nikotinik asetikolin reseptörleri ile agonist olarak da etkileşir. Kolin tedavisi nörotrasmitter asetilkolin’in sentez ve salıverilmesinde hızlanma ve merkezi ve periferik muskarinik ve nikotinik kolinerjik iletide yükselme ile sonuçlanır. Kolin, burada tartışılacak olan, kolinerjik nitelikte birçok fizyolojik, farmakolojik ve nörokimyasal etkiler oluşturur

Kaynakça

  • Strecker A. Uber eingige neue bestandtheile der schweingalle. Ann Chem Pharmacie 1862; 183: 964-965.
  • Best CH, Huntsman ME. The effect of the components of lecithine upon deposition of fat in the liver. J Physiol 1932; 75: 405-412.
  • Quastel JH, Tennenbaum M, Wheatley AHM. Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem J 1936; 30: 1668-1681.
  • CohenE.L, Wurtman RJ. Brain acetylcholine: Increase after systemic choline administration. Life Sci 1975; 16: 1095-1102.
  • Cohen EL, Wurtman RJ. Brain acetylcholine: control by dietary choline. Science 1976; 191: 561-562.
  • Ulus IH, Wurtman,RJ. Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain. Science 1976; 94: 1060-1061.
  • Institute of Medicine, National Academy of Science, USA. 1998. Choline. Pages: 390-422, in: Dietary Reference Intakes for Folate, Thiamine, Riboflavin, Niacin, Vitamin B12, Panthothenic Acid, Biotin, and Choline, Natl. Acad. Press, Washington DC.
  • Benishin CG, Carroll PT. Multiple forms of choline-O-acetyltransferase in mouse and rat brain: solubilization and characterization. J Neurochem 1983; 41:1030-1039.
  • Salem N, Medilanski J, Pellegrinelli N, Eder-Colli L. Hydrophilic and amphiphilic forms of Drosophilia choline acetyltransferase are encoded by a single mRNA. Eur J Neurosci 1994; 6: 737-745.
  • Pahud G, Salem N, Van de Goor J, Medilanski J, Pellegrinelli N, Eder-Colli L. Study of subcellular localization of membrane-bound choline acetyltransferase in Drosophilia central nervous system and its association with membranes. Eur J Neurosci 1998; 10: 1644-1653.
  • Pahud G, Medilanski J, Eder-Colli L. Cytosolic choline acetyltransferase binds specifically to cholinergic plasma membrane of rat brain synaptosomes to generate membrane-bound enzyme. Neurochem Res 2003;28: 543-549.
  • Rossier J. Acetyl-coenzyme A and coenzyme A analogues. Their effects on rat brain choline acetyltransferase. Biochem J 1977; 165: 321-326.
  • Hirsch MJ, Growdon JH, Wurtman RJ. Relations between dietary choline or lecithin intake, serum choline levels, and various metabolic indices. Metabolism 1978; 27: 953-960.
  • Zeisel SH, Growdon JH, Wurtman RJ, Magil SG, Logue M. Normal plasma choline responses to ingested lecithin. Neurology 1980; 30: 1226-1229.
  • Savendahl L, Mar MH, Underwood LE, Zeisel SH. Prolonged fasting in humans results in diminished plasma choline concentrations but does not cause liver dysfunction. Am. J. Clin. Nutr. 1997; 66: 622-625.
  • Zeisel SH, Da Costa K-A, Franklin PD, Alexander EA, Lamont JT, Sheard NF, Beiser A. FASEB J 1991; 2093-2098.
  • Ilcol YO, Uncu G, Ulus IH. Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch Physiol Biochem 2002; 110: 393-399.
  • Ilcol YO, Ozbek R, Hamurtekin E, Ulus IH. Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem 2005; 16: 489-499.
  • Ilcol YO, Dilek K, Yurtkuran M, Ulus IH. Changes of plasma free choline and choline-containing compounds` concentrations and choline loss during hemodialysis in ESRD patients. Clin Biochem 2002; 35: 233-239.
  • Ilcol YO, Donmez O, Yavuz M, Dilek K, Yurtkuran M, Ulus IH. Free choline and phospholipid-bound choline concentrations in serum and dialysate during peritoneal dialysis in children and adults. Clin. Biochem. 2002; 35: 307-313.
  • Buchman AL, Jenden D, Suki WN, Roch M. Changes in plasma free and phospholipid-bound choline concentrations in chronic hemodialysis patients. J Renal Nutr 2000; 10: 133-138.
  • Rennick B, Acara M, Hysert P, Mookerjee B. Choline loss during hemodialysis: homeostatic control of plasma choline concentrations. Kidney Int 1976; 10: 329-335.
  • Ulus IH, Ozyurt G, Korfali E. Decreased serum choline concentrations in humans after surgery, childbirth, and traumatic head injury. Nurochem Res. 1998; 23: 727-732.
  • Ilcol YO, Ozyurt G, Kilicturgay S, Uncu G, Ulus IH. The decline in serum choline concentration in humans during and after surgery is associated with elevation of cortisol, adrenocorticotropic hormone, prolactin and β-endorphin concentrations. Nurosci Lett 2002; 324: 41-44.
  • Ilcol YO, Uncu G, Goren S, Sayan E, Ulus IHDeclines in serum free choline and bound choline concentrations in humans after three different types of major surgery. Clin Chem Lab Med 2004; 42: 1390-1395.
  • Ilcol YO, Basagan-Mogol E, Cengiz M, Ulus IH. Elevation of serum cerebral injury markers correlates with serum choline decline after coronary artery bypass grafting surgery. Clin Chem Lab Med 2006; 44: 471-478.
  • IlcolYO, Yilmaz Z, Ulus IH. Serum free and phospholipid-bound choline decrease after surgery and methylprednisolone administration in dogs. Neurosci Lett 2003; 339: 195-198.
  • Conlay LA, Wurtman RJ, Blusztajn JK, Coviella IL, Maher TJ, Evoniuk GE. Decreased plasma choline concentrations in marathon runners. New Eng. J. Med. 1986; 315: 892.
  • Buchman AL, Jenden D, Roch M. Plasma free, phospholipid-bound and urinary free choline all decrease during a marathon run and may be associated with impaired performance. J Am Col Nitr 1999;18: 598-601.
  • Danne O, Lueders C, Storm C, Frei U, Mockel M. Whole-blood hypercholinemia and coronary instability and trombosis. Clin Chem 2005; 51: 1315- 1317.
  • Sandmann J, Wurtman RJ. Phospholipase D and Phospholipase C in human cholinergic neuroblastoma (LA-N-2) cells: Modulation by muscarinic agonists and protein kinase C. In: Nishizuka, Y., Endo, M., and Tanaka C. (eds.), Biology and Medicine of Signal Transduction, Raven Press, New York, 1990; : 176-181
  • Sandmann J, Peralta EG, Wurtman RJ. Coupling of transfected muscarinic acetylcholine receptor subtypes to phospholipase D. J Biol Chem 1991; 266: 6031-6034.
  • Sandmann J, Wurtman RJ. Stimulation of phospholipase D activity in human neuroblastoma (LA-N-2) cells by activation of muscarinic acetylcholine receptors
  • or by phorbol esters: relationship to phosphoinositide turnover. J. Neurochem. 1991; 56: 1312-1319.
  • Ulus IH, Wurtman RJ, Mauron C, Blusztajn JK. Choline increases acetylcholine release and protects against the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res 1989; 484: 217-227.
  • Farber SF, Savci V, Wei A, Slack BE, Wurtman RJ. Choline’s phosphorylation in rat striatal slices is regulated by the activity of cholinergic neurons. Brain Res 1996: 723: 90-99.
  • Crews FT, Hirata F, Axelrod J. Identification and properties of methyltransferases that synthesize phosphatidylcholine in rat brain synaptosomes. J Neurochem 1980;34: 1491-1498.
  • Yamamura HI, Snyder SH. Choline: high-affinity uptake by rat brain synaptosomes. Science 1972;178: 626-628.
  • Yamamura HI, Snyder SH. High affinity transport of choline into synaptosomes of rat brain. J Neurochem 1973; 21: 1355-1374.
  • Kuhar MJ, Murrin LC. Sodium-dependent high-affinity choline uptake. J Neurochem 1978; 30: 15-21.
  • Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I. Identification and characterization of the high-affinity choline transporter. Nat Neurosci 2000; 3: 120-125.
  • Okuda T, Haga T. High-affinity choline transporter. Neurochem Res 2003; 28: 483-488.
  • Haberberger RV, Pfeil U, Lips KS, KummerW. Expression of the high-affinity choline transporter, CHT1, in the neuronal and non-neuronal cholinergic system of human and rat skin. J Invest Dermatol 2002;119: 943-948.
  • Misawa H, Nakata K, Matsuura J, Nagao M, Okuda T, Haga T. Distribution of the high-affinity choline transporter in the central nervous system of the rat. Neuroscience 2001; 105: 87-98.
  • Kus L, Borys E, Chu YP, Ferguson SM, Blakely RD, Emborg ME, Kordower JH, Levey AI, Mufson, EJ. Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system. J Comp Neurol 2003; 436: 341-357.
  • Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, Yi, H, Levey AI, Blakely RD. Vesicular localization and activity- dependent trafficking of presynaptic choline transporters. J Neurosci 2003; 23: 9697-9709.
  • Haga T, Noda H. Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta 1973; 291: 564-575.
  • O’Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM. An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins. Proc Natl Acad Sci USA 2000; 97: 1835-1840.
  • Inazu M, Takeda H, Matsumiya T. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes. J Neurochem 2005; 94: 1427-1437.
  • Pardridge WM, Oldendorf WH. Transport of metabolic substrates through the blood-brain barrier. J Neurochem 1977; 28: 5-12.
  • Pardridge WM. Blood-brain barrier transport of nutrients. Fed Proc1986; 45: 2047-2049.
  • Klein J, Koppen A, Loffelholz K. Small rises in plasma choline reverse the negative arteriovenous difference of brain choline. J Neurochem 1990; 55: 1231-1236.
  • Ulus IH, Millington WR, Buyukuysal RL, Kiran BK. Choline as an agonist: determination of its agonistic potency on cholinergic receptors. Biochem Pharmacol. 1988; 37: 2747-2755.
  • Ilcol YO, Gurun MS, Taga Y, Ulus IH. Intraperitoneal administration of choline increases serum glucose in rat: involvement of the sympathoadrenal system. Horm Metab Res 2002; 34: 341-347.
  • Ilcol YO, Gurun MS, Taga Y, Ulus IH. Choline increases serum insulin in rat when injected intraperiotenally and augments basal and stimulated acetylcholine release from the rat minced pancreas in vitro. Eur J Biochem 2003; 270: 991-999.
  • Klein J, Gonzales R, Koppen A, Loffelholz,K. Free choline and choline metabolites in rat brain and body fluids: sensitive determination and implications for choline supply to the brain. Neurochem Int 1993; 22: 293-300.
  • Klein J, Koppen A, Loffelholz K. Regulation of free choline in rat brain: Dietary and pharmacological manipulations. Neurochem Int 1998; 32: 479- 485.
  • Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport. A role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem 2001; 276: 41611-41619.
  • Johnson DA, Ulus IH, Wurtman RJ. Caffeine potentiates the enhancement by choline of striatal acetylcholine release. Life Sci 1992; 51: 1597
  • Buyukuysal RL, Ulus IH, Aydin S, Kiran BK. 3,4-diaminopyridine and choline increase in vivo acetylcholine release in rat striatum. Eur J Pharmacol 1995; 281: 179-185.
  • Ulus IH, Buyukuysal RL, Wurtman RJ. N-Methyl-D-Aspartate increases acetylcholine release from rata striatum and cortex: Its effect is augmented by choline. J Pharmacol Exp Ther 1992; 261: 1122-1128.
  • Ulus IH, Watkins CJ, Cansev M, Wurtman RJ. Cytidine and uridine increase striatal CDP-Choline levels without decreasing acetylcholine synthesis or release. Cell. Mol. Neurobiol. 2006; 26: 563-577.
  • Ulus IH, Hirsch M J, Wurtman R J. Trans-synaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: evidence that choline administration can increase cholinergic neurotransmission. Proc Natl Acad Sci USA. 1977; 74: 798-800.
  • Ulus I H, Scally MC, Wurtman R J. Choline potentiates the induction of adrenal tyrosine hydroxylase by reserpine, probably by enhancing the release of acetylcholine. Life Sci 1977; 21:145-148.
  • Ulus IH, Scally MC, Wurtman RJ. Enhancement by choline of the induction of adrenal tyrosine hydroxylase by phenoxybenzamine, 6- hydroxydopamine, insulin or exposure to cold. J Pharmacol Exp Ther 1978; 204: 676-682.
  • Ulus IH, Wurtman R J. Selective response of rat peripheral sympathetic nervous system to various stimuli. J Physiol 1979; 293: 513-523.
  • Scally MC, Ulus IH, Wurtman RJ. Choline administration to the rat increases urinary catecholamines. J Neural Transm 1978; 43: 103-112.
  • Birks RI, MacIntosh FC. Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 1961;39: 787-827.
  • Parducz A, Kiss Z, Joq F. Changes of the phosphatidylcholine content and the number of synaptic vesicles in relation to the neurohumoral transmission in sympathetic ganglia. Experientia 1976; 32: 1520-1521.
  • Parducz A, Joo F, Toldi J. Formation of synaptic vesicles in the superior cervical ganglion of cat: choline dependency. Exp Brain Res 1986;63: 221-224.
  • Kuntscherova J. Effect of short-term starvation and choline on the actylcholine content of organs of albino rats. Physiol Bohemoslov 1972; 21: 655-660.
  • Haubrich DR, Wedeking PW, Wang PFL. Increase in tissue concentration of choline in guinea pigs in vivo induced by administration of choline. Life Sci 1974; 14: 921-927.
  • Dieterich HA, Lindmar R, Loffelholz K. The role of choline in the release of acetylcholine in isolated hearths. Nauny-Schmiedeberg’s Arch Pharmacol1978; 301: 207-215.
  • Meyer EM, Baker S P. Effects of choline augmentation on acetylcholine release in rat atrial minces. Life Sci 1986; 39: 1307-1315.
  • Hutter F. Effect of choline on neuromuscular transmission in the cat. J Physiol. (London) 1952; 117: 241-250.
  • Bierkamper GG, Goldberg AM The effect of choline on the release of acetylcholine from the neuromuscular junction. In: Barbeau, A., Growdon, J.H., and Wurtman, R.J. (eds.), Nutrition and the Brain, Vol. 5, Raven Press, New York, 1979; 243-251
  • Bierkamper GG, Goldberg AM. Release of acetylcholine from the vascular perfused rat phrenic nerve-hemidiaphragm. Brain Res 1980; 202: 234- 247.
  • Del Castillo J, Katz B. Interaction at end-plate receptors between different choline derivaties. Proc R Soc Lond B Bio. Sci 1957; 146: 369-381.
  • Bacq ZM, Brown GL. Pharmacological experiments on mammalian voluntary muscle, in relation to the theory of chemical transmission. J Physiol (London) 1937; 89: 45-60.
  • Chang HC, Gaddum JH. Choline esters in tissue extracts. J Physiol (London) 1933; 79: 255-285.
  • Dale, HH.. The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 1914; 6: 147-190.
  • Feldberg W, Vartiainen A. Further observation on the physiology and pharmacology of a sympathetic ganglion. J Physiol (London) 1934; 83: 103-128.
  • Krstic, M.K. 1972. The action of choline on the superior cervical ganglion of the cat. Eur. J. Pharmacol. 17: 87-96.
  • Krnjevic K, Reinhardt W. Choline excites cortical neurons. Science 1979;205: 1321-1322.
  • Kilbinger H, Kruel R. Choline inhibits acetylcholine release via presynaptic muscarine receptors. Naunyn Schmiedebergs Arch Pharmacol 1981; 316: 131-134.
  • Huang S, Lin Q. Functional expression and processing of rat choline dehydrogenase precursor. Biochem Biophys Res Commun 2003; 309: 344- 350.
  • Carriere JL, El-Fakanay EE. Choline is a full against in inducing activation of neuronal nitric oxide synthase via the muscarinic M1 receptor. Pharmacology 2000; 60: 82-89.
  • Holz RW, Senter RA. Choline stimulates nicotinic receptors on adrenal medullary chromaffin cells to induce catecholamine secretion. Science 1981; 214: 466-468.
  • Alkondon M, Pereira EFR, Cortes WS, Maelicke A, Albuquergue EX. Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 1997; 9: 2734-2742.
  • Alkondon M, Albuquerque EX. Subtype-specific inhibition of nicotinic acetylcholine receptors by choline: A regulatory pathway. Pharmacol Exp Ther 2006; 318: 268-275.
  • Mandelzys A, De Koninck P, Cooper E. Agonist and toxin sensitivities of ACh-eveoked currents on neurons expressing multiple nicotinic subunits. J Neurophysiol 1995; 74: 1212-1221.
  • Papke RL, Bencherif M, Lippiello P. An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compunds indicates that choline is selective for the alpha7 subtype. Neurosci Lett 1996; 213: 201-204.
  • Zwart R, Vijverberg HP. Potentiation and inhibition of neuronal alpha4beta4 nicotinic acetylcholine receptors by choline. Eur J Pharmacol 2000; 393: 209-214.
  • Steigmann F, Firestein R, De La Huerga J. Intravenous choline therapy. Fed Proc 1952; 11: 393.
  • Singh GS. Action of choline the rat blood pressure. Indian J Physiol Pharmacol 1973; 17: 125.
  • SavciV, Goktalay G, Cansev M, Cavun S, Yilmaz SM, Ulus IH. Intravenously injected CDP-choline increases blood pressure and reverses hypotension in haemorrhagic shock: effect is mediated by central cholinergic activation. Eur J Paharmacol 2003; 468: 129-139.
  • Cansev M, Yilmaz MS, Ilcol YO, Hamurtekin E, Ulus IH. Cardiovascular effects of CDP-choline and its metabolites: involvement of peripheral autonomic nervous system. Eur J Pharmacol 200/; 577: 129-142.
  • Ulus I H, Arslan Y, Tanrisever R, Kiran B K. Postsynaptic effects of choline administration. In: Barbeau, A., Growdon, J. H. and Wurtman, R. J. (eds.), Nutrition and the Brain, Vol. 5, Raven Press, New York, 1979;: 219-226.
  • Boyd WD, Graham-White J, Blackwood G, Glen I, McQueen J. Clinical effects of choline in Alzheimer senile dementia. Lancet 1977; 2: 711.
  • Srimal RC, Jaju BP, Sinha JN, Dixit KS, Bhargava KP. Analysis of the central vasomotor effects of choline. Eur J Pharmacol 1969; 5: 239-244.
  • Kubo T, Misu Y. Blood pressure response to intracisternal administration of choline. Jpn J Pharmacol 1981;31: 839-841.
  • Kubo T, Misu Y. Cardiovascular response to microinjection of physiostigmine and choline into the dorsal medullary site of the rat. Neuropharmacology 1981;20: 1091-1095.
  • Caputi AP, Brezenoff HE. Cardiovascular effects produced by choline injected into the lateral cerebral ventricle of the unanesthetized rat. Life Sci 1980; 26:1029-1036.
  • Arslan BY, Ulus IH, Savci V, Kiran B K. Effects of intracerebroventricular injected choline on cardiovascular functions and sympathoadrenal activity. J Cardiovasc Pharmacol 1991;17: 814-821.
  • Isbil-Buyukcoskun N, Gulec G, Ozluk K, Ulus, IH. Central injection of captopril inhibits the blood pressure response to intracerebroventricular choline. Braz J Med Biol Res 2001; 34: 815-820.
  • Li XD, Buccafusco JJ. Role of α7 nicotinic acetylcholine receptors in the pressor response to intracerebroventricular injection of choline: blockade by amyloid peptide Aβ1-42. J Pharmacol Exp Ther 2004; 309: 1206-1212.
  • Altura BA. Role of spleen in choline stimulation of reticoendothelial system and resistance to acute haemorrhage. Proc Soc Exp Biol Med 1978;158: 77-80.
  • Ulus IH, Arslan BY, Savci V, Kiran BK. Restoration of blood pressure by choline treatment in rats made hypotensive by haemorrhage. Br J Pharmacol 1995; 116: 1911-1917.
  • Savci V, Cavun S, Goktalay G, Ulus IH. Cardiovascular effects of intracerebroventricularly injected CDP-choline in normotensive and hypotensive animals: the involvement of cholinergic system. Naunyn-Schmiedeberg’s Arch Paharmacol 2002; 365: 388-398.
  • Savci V, Goktalay G, Ulus IH. Intracerebroventricular choline increases plasma vasopressin and augments plasma vasopressin response to osmotic stimulation and hemorrhage.Brain Res 2002; 942:58-70.
  • Isbil-Buyukcoskun N, Ilcol YO, Cansev M, Hamurtekin E, Ozluk K, Ulus IH. Central choline supresses plasma renin response to graded haemorrhage. Clin Exp Phar Physiol 2008; 35: 1023-1031.
  • Gurun MS, Millington WR, Ulus IH. Choline potentiates the pressor response evoked by glycyl-glutamine or naloxone in haemorrhaged rats. Clin Exp Pharmacol Physiol 2003;30: 640-642.
  • Savci V, Ulus IH. Choline administration reverses hypotension in spinal cord transected rats: the involvement of vasopressin. Neurochem Res 1998; 23: 733-741.
  • Savci,V, Ulus IH. Central choline reverses hypotension caused by alpha-adrenoceptor or ganglion blockade in rats: the role of vasopressin. Eur J Pharmacol 1996; 311: 153-161.
  • Gurun MS, Savci V, Ulus IH. Intracerebroventricular choline reverses hypotension induced by acute chemical sympathectomy. J Auton Pharmacol 1997; 17: 155-163.
  • Ilcol YO, Yilmaz Z, Ulus IH. Endotoxin alters serum free choline and phospholipid-bound choline concentrations, and choline administration attenuates endotoxin-induced organ injury in dogs. Shock 2005; 24: 288-293.
  • Rivera CA, Wheeler MD, Enomoto N, Thurman RG. A choline-rich diet improves survival in a rat model of endotoxic shock. Am J. Physiol 1998; 275: G862-G867.
  • Ilcol YO, Yilmaz Z, Cansev M, Ulus IH. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: Involvement of the peripheral nicotinic acetylcholine receptors. Shock 2009; 32: 286-294.
  • Yilmaz Z, Ilcol YO, Torun S, Ulus IH. Intravenous administration of choline or CDP-choline improves platelet count and platelet closure times in endotoxin-treated dogs. Shock 2006;25: 73-79.
  • SavciV, Ulus IH. Cardiovascular effects of central choline during endotoxin shock in the rat. J Cardiovasc Pharmacol 1997; 30: 667-675.
  • Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang L-H, Hudson L, Lin X, Patel N, Johnson SM, Chavan S, Goldstein RS,, Czura CJ, Miller E, Al-Abed Y, Racey KJ, Pavlow V. Modulation of TNF release by choline requires a7 subunit nicotinic acetylcholine receptor- mediated signaling. Mol Med 2008; 14: 567-574.
  • Unal CB, Demiral Y, Ulus IH. The effects of choline on body temperature in conscious rats. Eur J Pharmacol 1998; 363: 121-126.
  • Botticelli LJ, Lytle LD, Wurtman RJ. Choline-induced attenuation of morphine analgesia in the rat. Commun Psychopharmacol 1977; 1: 519-523.
  • Damaj MI, Meyer EM, Martin BR. The antinociceptive effects of alpha7 nicotinic agonists in an acute pain model. Neuropharmacology 2000; 39: 2785-2791.
  • Wang Y, Su D-M, Wang R.-H, Liu Y, Wang H. Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience 2005; 132: 49- 56.
  • Hamurtekin E, Gurun MS. The antinociceptive effects of centrally administered CDP-choline on acute pain models in rats: The involvement of cholinergic system. Brain Res. 2006; 1117: 92-100.
  • Cansev M, Ilcol YO, Yilmaz MS, Hamurtekin E, Ulus IH. Peripheral administration of CDP-choline, phosphocholine or choline increases plasma adrenaline and noradrenaline concentrations. Autonom Autacoid Pharmacol 2008; 28: 41-58.
  • Savci V, Gurun MS. Ulus IH, Kiran BK. Effect of intracerebroventricularly injected choline on plasma ACTH and beta-endorphin levels in conscious rats. Eur J Pharmacol 1996; 309: 275-280.
  • Gurun MS, Savci V, Ulus IH, Kiran BK. Centrally administered choline increases plasma prolactin levels in conscious rats. Neurosci. Lett. 1997; 232: 79-82.
  • Gurun,M.S, Ilcol YO, Taga Y, Ulus IH. Hyperglycemia induced by intracerebroventricular choline: involvement of the sympatho-adrenal system. Eur J Pharmacol 2002; 438: 197-205.
  • Ladd SL, Sommer SA, LaBerge S, Toscana W. Effect of phosphatidylcholine on explicit memory. Clin Neuropharmacol 1993; 16: 540-549.
  • Leathwood PD, Heck E, Mauron J. Phosphatidylcholine and avoidance performance in 17 month old SEC/1ReJ mice. Life Sci 1982; 30: 1065- 1070.
  • Davis KL, Mohs RC, Tinklenberg LA, Hollister LE. Pfefferbaum A, Kopell BS. Cholinomimetics and memory: effect of choline chloride. Arch. Neurol. 1980; 37: 49-51.
  • Harris CM, Dysken MW, Fovall P, Davis JM. Effect of lecithin on memory in normal adults. Am J Psych 1983; 140: 1010-1012.
  • Kopf SR, Bucholzer ML, Hilgert M, Loffelholz K, Klein J. Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release. Neuroscience 2001; 103: 365-371.
  • Bartus RT, Dean RL, Goas JA, Lippa AS. Age-related changes in passive avoidance retention: modulation with dietary choline. Science 1980; 209: 301-303.
  • Meck WM, Smith RA, Williams CL. Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev Psychobiol 1988; 21: 339-353.
  • Meck WM, Williams CL.Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 1997;8: 2831-2835.
  • Tees RC, Mohammadi E. The effects of neonatal choline dietary supplementation on adult spatial and configural learning and memory in rats. Dev Psychobiol 1999; 35: 226-240.
  • Holmes GL, Yang Y, Liu Z, Cermak JM, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res 2002; 48: 3-13.
  • Thomas JD, Garrison M, O’Neill TM. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 2004;26: 35-45.
  • Ryan SH, Williams JK, Thomas JD. Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res 2008; 1237: 91-100.
  • Thomas JD, Abou EJ, Dominguez HD. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol Teratol 2009; 31: 303-311.
  • Glenn Mj, Gibson EM, Kirby ED, Mellott TJ, Blusztajn JK, Williams CL. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experinces in adult female rats. Eur J Neurosci 2007; 25: 2473-2482.
  • Meck WH, Williams CL. Metabolic imprinting of choline by its vailability during gestation: implicatipns for memory and attentional processing across the life span. Neurosci Biobehav Rev 2003; 27: 385-399.
  • Ross RG, Stevens KE, Proctor WR, Leonard S, Kisley MA, Hunter SK, Freedman R, Adams CE. Research review: cholniergic mechanisms, early brain development, and risk for schizophrenia. J Child Psychol Psychiatry 2009; (18 Kasımda önceden basılmış).
  • Barrantes FJ, Borroni V, Valles S. Neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in Alzheimer’s disease. FEBS Letters 2009; (13 Kasımda önceden basılmış).
  • Guo-Ross SX, Clark S, Montoya DAC, Jones KH, Obernier J, Shetty AK, White AM, Blusztajn JK, Wilson WA, Swartzwelder HS. Prenatal choline supplementation protects against postnatal neurotoxicity. J Neurosci 2002; 22: RC195.
  • Yang Y, Liu Z, Cermak JM, Tandon P, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK, Holmes GL. Protective effects of prenatal choline supplementation on seizure-induced memory impairment. J Neurosci 2000; 20: RC109.
  • Yang B, Lin H, Xu C, Liu Y. Wang H, Han H, Wang Z. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac M3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem 2005; 16: 163-174.
  • Jonnala RR, Graham III JH, Terry AV, Beach JW, Young JA, Buccafusco JJ. Relative levels of cytoprotection produced by analogs of choline and the role of alpha7-nicotinic acetylcholine receptors. Synapse 2003; 47: 262-269.
  • Strahlendorf JC, Acosta S, Miles R, Strahlendorf HK. Choline blocks AMPA-induced dark cell degeneration of Purkinje neurons: potential role of the α7 nicotinic receptor. Brain Res 2001; 901: 71-78.
  • Murakami H, Ohkura A, Takanaga H, Matsuo H, Koyabu N, Naito M, Tsuruo T, Ohtani H, Sawada Y. Functional characterization of adenosine transport across the BBB in mice. Int J Pharm 2005; 290: 37-44.
  • Pinsky C, Frederickson RCA, Vazquez AJ. Morphine withdrawal syndrome responses to cholinergic antagonists an to apartial cholinergic agonist. Nature 1973; 242: 59-60.
  • Frederickson RCA, Pinsky C. Effects of cholinergic and anticholinergic drugs and a partial cholinergic agonist on the development and expression of physical dependence on morphine in rats. J Pharmacol Exp Ther 1975; 193: 44-55.
  • Wecker L, Rothermal S, Cawley G. Chronic choline supplementation attenuates the behavioral effects of pentobarbital. Pharmacol Biochem Behav 1987; 28: 469-475.
  • Coutcher JB, Cawley G, Wecker L. Dietary choline supplementation increases the density of nicotine binding sites in rat brain. J Pharmacol Exp Ther 1992; 262: 1128-1132.
  • Morley BJ, Garner LL. Increases in the concentration of brain alpha-bungarotoxin binding sites induced by dieatary choline are age dependent. Brain Res 1986; 378: 315-319.
  • Wecker L, Flynn CJ. Stouse MR, Trommer BA. Choline availability: effects on the toxicity of centrally active drugs. Drug Nutr Interact1982;1: 125
  • Miller LG, Greenblatt DJ, Roy RB, Lopez F, Wecker L. Dietary choline intake modulates benzodiazepine receptor binding and γ-aminobutyric acidA receptor function in mouse brain. J Pharmacol Exp Ther 1989; 248: 1-6.
Toplam 160 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Collection
Yazarlar

İsmail Hakkı Ulus

Mehmet Cansev

Yayımlanma Tarihi 1 Haziran 2010
Yayımlandığı Sayı Yıl 2010Sayı: 2

Kaynak Göster

EndNote Ulus İH, Cansev M (01 Haziran 2010) Kolin’in Merkezi ve Periferik Kolinerjik Nöronlarda ve Kolinerjik İletimdeki İşlevi. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 2 68–80.