BibTex RIS Kaynak Göster

Effect of Breathing on Contralateral Breast Doses in Patients with Breast Carcinoma Receiving Radiotherapy

Yıl 2013, Sayı: 3, 123 - 127, 01.09.2013

Öz

Objectives: Radiotherapy RT for breast cancer results in scattered radiation doses to the contralateral breast CB which is found to be associated with an increased risk of secondary malignancy. This study investigates the dosimetric and volumetric changes in CB as a consequence of changes during the breathing cycle. Patients- Methods: Ten patients with breast carcinoma underwent breast conservative surgery or mastectomy receiving RT are included. For this study, planning CT computerized tomography images were obtained during deep inspiration I and end of expiration E , as well as free breathing FB in order to simulate respiratory cycle. I and E images were registered to FB. Targets and CB were contoured by the same Radiation Oncologist on 3 image series. Three dimensional conformal or IMRT planning was done to obtain dose - volume information. Treatment plans and dose calculations were constructed using CT images taken during FB. Then, plan was exported to I and E image series. The significance of dose and volume changes was investigated. Results: Mean breast doses changed marginally between FB and I p=0,057 while not significant between FB and E p=0.58 . There was a significant variation between I and F, and I and E for 1% of CB volume receiving maximum dose p=0.008 and p=0.03 while it was not significant between FB and E p=0.35 . Intended dose constrains for CB were achieved for all patients as mean CB doses were less than 1 Gy and max CB doses were less than 3.5 Gy. However, these limitations exceeded during I phase in 6 out of 10 patients regarding maximum CB doses and 1 out of 10 patients for mean CB dose. Conclusion: Contralateral breast dose changes should be considered together with heart and lung dose changes during the different phases of respiratory cycle because maximum CB dose could exceed the upper limit in 60% of patients during I.

Kaynakça

  • 1. Ragaz J, Olivotto IA, Spinelli JJ et al. Radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20- year results of the British Columbia randomized trial. J Natl Cancer Inst 2005; 97:116–126.
  • 2. Korreman SS, Pedersen AN, Aarup LR, et al. Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 2006 65:1375-1380.
  • 3. Frazier RC, Vicini FA, Sharpe MB, et al. Impact of breathing motion on whole breast radiotherapy: a dosimetric analysis using active breathing control. Int J Radiat Oncol Biol Phys 2004; 58:1041-1047.
  • 4. Jagsi R, Moran JM, Kessler ML, et al. Respiratory motion of the heart and positional reproducibility under active breathing control. Int J Radiat Oncol Biol Phys 2007; 68:253-258.
  • 5. Mark W. Mcdonald, M.D., Karen D. Godette, M.D., Elızabeth K. Butker, M.S., Lawrence W. Davıs, Peter A. S. Johnstone Long-Term Outcomes Of Imrt For Breast Cancer: A Sıngle-Instıtutıon Cohort Analysıs, M.D. Int. J. Radiation Oncology Biol Phys 2008; 72:1031–1040.
  • 6. Gao X, Fisher SG, Emami B. Risk of second primary cancer in the contralateral breast in women treated for early-stage breast cancer: a population-based study. Int J Radiat Oncol Biol Phys 2003; 56:1038-1045
  • 7. Bernstein JL, Thompson WD, Risch N, et al. Risk factors predicting the incidence of second primary breast cancer among women diagnosed with a first primary breast cancer. Am J Epidemiol 1992;136:925–936.
  • 8. Hankey BF, Curtis RE, Naughton MD, et al. A retrospective cohort analysis of second breast cancer risk for primary breast cancer patients with an assessment of the effect of radiation therapy. J Natl Cancer Inst 1983; 70:797–804.
  • 9. Fowble B, Hanlon A, Freeman G, et al. Second cancers after conservative surgery and radiation for stages I-II breast cancer: Identifying a subset of women at increased risk. Int J Radiat Oncol Biol Phys 2001; 51:679–690.
  • 10. Raabe NK, Sauer T, Erichsen A, Nesland JM, Fossaa SD. Breast cancer in the contralateral breast: incidence and histopathology after unilateral radical treatment of the first breast cancer. Oncol Rep 1999; 6:1001-1007.
  • 11. Broet P, de la Rochefordire A, Scholl SM, Fourquet A, Mosseri V, Durand JC,Pouillart P, Asselain B. Contralateral breast cancer: annual incidence and risk parameters. J Clin Oncol 1995 ;13:1578-1583.
  • 12. Storm HH, Andersson M, Boice JD Jr, Blettner M, Stovall M, Mouridsen HT, Dombernowsky P, Rose C, Jacobsen A, Pedersen M. Adjuvant radiotherapy and risk of contralateral breast cancer. J Natl Cancer Inst 1992; 84:1245-1250.
  • 13. Julien J-P, Bijker N, Fentiman IS, et al. Radiotherapy in breastconserving treatment for ductal carcinoma in situ: First results of the EORTC randomized phase III trial 10853. Lancet 2000;355:528–533.
  • 14. R Roychoudhuri, H Evans, D Robinson and H Møller, Radiationinduced malignancies following radiotherapy for breast Cancer, British Journal of Cancer 2004; 91:868 – 872.
  • 15. Fisher B, Dignam J, Wolmark N, et al. Lumpectomy and radiation therapy for the treatment of intraductal breast cancer:Findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 1998;16:441–452.
  • 16. Boice Jr JD, Blettner M, Kleinerman RA, Stovall M, Moloney WC, Engholm G, Austin DF, Bosch A, Cookfair DL,Krementz ET, Latourette HB, Peters LJ, Schulz MD,Lundell M, Pettersson F, Storm HH, Bell CMJ, Coleman MP, Fraser P, Palmer M, Prior P, Choi NW, Hislp TG,Koch M, Robb D, Robson D, Spengler RF, von FournierD, Frishchkorn R, Lochmu¨ ller H, PompeKirn V, Rimpela A, KjØrstad K, Pejovic MH, Sigurdsson K, Pisani P,Kucera H and Hutchison GB. J. Natl. Cancer Inst 1987; 79:1295–1311.
  • 17. Remouchamps VM, Vicini FA, Sharpe MB, et al. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys 2003; 55:392-406.
  • 18. Alice J Sigurdson, and Irene M Jones Second cancers after radiotherapy: any evidence for radiation-induced genomic instability? Oncogene 2003; 22:7018–7027.
  • 19. Gilbert ES, Stovall M, Gospodarowicz M, van Leeuwen FE, Andersson M, Glimelius B, Joensuu T, Lynch CF, Curtis RE, Holowaty E, Storm H, Pukkala E, van’t Veer MD, Fraumeni Jr JF, Boice Jr JD, Clarke EA and Travis LB. Radiat Res 2003; 159:161–173.
  • 20. RTOG protocol number 1005 page 29
  • 21. Chougule A. Radiation dose to contra lateral breast during treatment of breast malignancy by radiotherapy. J Can Res Ther 2007;3:8-11
  • 22. Tarcilla O, Krasin F, Lawn-Tsao L. Comparison of contralateral breast doses from 1/2 beam block and isocentric treatment techniques for patients treated with primary breast irradiation with 60CO. Int J Radiat Oncol Biol Phys 1989;17:205-10.
  • 23. A S Alzoubi, S Kandaiya, A Shukri and E Elsherbieny. Contralateral breast dose from chest wall and breast irradiation: local experience. Australas Phys Eng Sci Med 2010.
  • 24. Bhatnagar AK, Brandner E, Sonnik D, Wu A, Kalnicki S, Deutch M, et al . Intensity modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation: Initial report. Cancer Jr 2004;10:381-5.
  • 25. Bhatnagar AK, Heron DE, Deutch M, Brandndner E, Andrew WU, Kalnicki S. Does breast size affect the scatter dose to ipsilateral lung, heart or contralateral breast in primary irradiation using intensity modulated radiotherapy (IMRT)? Am J Clin Oncol 2006; 29:80-4.

RADYOTERAPİ UYGULANAN MEME KANSERLİ HASTALARDA SOLUNUM HAREKETLERİNİN KARŞI MEME DOZUNA ETKİSİ

Yıl 2013, Sayı: 3, 123 - 127, 01.09.2013

Öz

Amaç: Radyoterapi RT sırasında karşı memeye CB saçılan ışınların artmış ikincil kanser gelişmesiyle ilişkisi bulunmuştur. Bu çalışmada solunum siklusu boyunca karşı meme hacmi ve dozunun değişimi incelenmiştir. Hastalar ve Yöntemler: Meme kanseri tanısıyla meme koruyucu cerrahi veya mastektomi uygulanmış 10 hasta çalışmaya alındı. Bu çalışmaya özel olarak, planlama amacıyla kontrolsuz solunum FB yanında, derin inspirasyon I ve ekspirasyon sonu E bilgisayarlı tomografi görüntüleri de alındı. I ve E imajları FB imajlarına çakıştırıldı. Target ve CB hacimleri aynı Radyasyon Onkoloğu tarafından 3 seride de belirlendi. Doz- hacim verilerini elde etmek amacıyla 3 boyutlu konformal veya yoğunluk ayarlı radyoterapi teknikleri ile FB serisi kullanılarak planlama yapıldı. Daha sonra plan I ve E serilerine aktarıldı. Doz ve hacimde oluşan farklılıklar değerlendirildi. Bulgular: Ortalama CB dozu F ve E arasında anlamlı farklılık göstermemesine p=0.58 karşın F ve I arasında sınırda anlamlı p=0.057 farklılık gösterdi. En yüksek dozu alan %1’lik hacim değeri I ile FB ve I ile E arasında anlamlı olarak p=0.008 ve p=0.03 değişirken FB ile E p=0.35 arasında anlamlı fark gözlenmedi. FB imajları kullanılarak yapılan planlamada CB için öngörülen kısıtlamalar olan; ortalama CB dozunun 1Gy’den az olması ve en yüksek CB dozunun 3,5 Gy’den az olması tüm planlarda sağlandı. Ancak I sırasında 10 hastanın 6’sında maksimum CB dozu ve 1’inde ortalama CB dozu öngörülen sınırları aştı. Sonuç: Hastaların %60’ında ortalama CB dozu belirlenen limitleri aşabileceğinden, kalp ve akciğer dozlarının yanında CB dozunun da solunum hareketleriyle değişimi izlenmelidir

Kaynakça

  • 1. Ragaz J, Olivotto IA, Spinelli JJ et al. Radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20- year results of the British Columbia randomized trial. J Natl Cancer Inst 2005; 97:116–126.
  • 2. Korreman SS, Pedersen AN, Aarup LR, et al. Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 2006 65:1375-1380.
  • 3. Frazier RC, Vicini FA, Sharpe MB, et al. Impact of breathing motion on whole breast radiotherapy: a dosimetric analysis using active breathing control. Int J Radiat Oncol Biol Phys 2004; 58:1041-1047.
  • 4. Jagsi R, Moran JM, Kessler ML, et al. Respiratory motion of the heart and positional reproducibility under active breathing control. Int J Radiat Oncol Biol Phys 2007; 68:253-258.
  • 5. Mark W. Mcdonald, M.D., Karen D. Godette, M.D., Elızabeth K. Butker, M.S., Lawrence W. Davıs, Peter A. S. Johnstone Long-Term Outcomes Of Imrt For Breast Cancer: A Sıngle-Instıtutıon Cohort Analysıs, M.D. Int. J. Radiation Oncology Biol Phys 2008; 72:1031–1040.
  • 6. Gao X, Fisher SG, Emami B. Risk of second primary cancer in the contralateral breast in women treated for early-stage breast cancer: a population-based study. Int J Radiat Oncol Biol Phys 2003; 56:1038-1045
  • 7. Bernstein JL, Thompson WD, Risch N, et al. Risk factors predicting the incidence of second primary breast cancer among women diagnosed with a first primary breast cancer. Am J Epidemiol 1992;136:925–936.
  • 8. Hankey BF, Curtis RE, Naughton MD, et al. A retrospective cohort analysis of second breast cancer risk for primary breast cancer patients with an assessment of the effect of radiation therapy. J Natl Cancer Inst 1983; 70:797–804.
  • 9. Fowble B, Hanlon A, Freeman G, et al. Second cancers after conservative surgery and radiation for stages I-II breast cancer: Identifying a subset of women at increased risk. Int J Radiat Oncol Biol Phys 2001; 51:679–690.
  • 10. Raabe NK, Sauer T, Erichsen A, Nesland JM, Fossaa SD. Breast cancer in the contralateral breast: incidence and histopathology after unilateral radical treatment of the first breast cancer. Oncol Rep 1999; 6:1001-1007.
  • 11. Broet P, de la Rochefordire A, Scholl SM, Fourquet A, Mosseri V, Durand JC,Pouillart P, Asselain B. Contralateral breast cancer: annual incidence and risk parameters. J Clin Oncol 1995 ;13:1578-1583.
  • 12. Storm HH, Andersson M, Boice JD Jr, Blettner M, Stovall M, Mouridsen HT, Dombernowsky P, Rose C, Jacobsen A, Pedersen M. Adjuvant radiotherapy and risk of contralateral breast cancer. J Natl Cancer Inst 1992; 84:1245-1250.
  • 13. Julien J-P, Bijker N, Fentiman IS, et al. Radiotherapy in breastconserving treatment for ductal carcinoma in situ: First results of the EORTC randomized phase III trial 10853. Lancet 2000;355:528–533.
  • 14. R Roychoudhuri, H Evans, D Robinson and H Møller, Radiationinduced malignancies following radiotherapy for breast Cancer, British Journal of Cancer 2004; 91:868 – 872.
  • 15. Fisher B, Dignam J, Wolmark N, et al. Lumpectomy and radiation therapy for the treatment of intraductal breast cancer:Findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 1998;16:441–452.
  • 16. Boice Jr JD, Blettner M, Kleinerman RA, Stovall M, Moloney WC, Engholm G, Austin DF, Bosch A, Cookfair DL,Krementz ET, Latourette HB, Peters LJ, Schulz MD,Lundell M, Pettersson F, Storm HH, Bell CMJ, Coleman MP, Fraser P, Palmer M, Prior P, Choi NW, Hislp TG,Koch M, Robb D, Robson D, Spengler RF, von FournierD, Frishchkorn R, Lochmu¨ ller H, PompeKirn V, Rimpela A, KjØrstad K, Pejovic MH, Sigurdsson K, Pisani P,Kucera H and Hutchison GB. J. Natl. Cancer Inst 1987; 79:1295–1311.
  • 17. Remouchamps VM, Vicini FA, Sharpe MB, et al. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys 2003; 55:392-406.
  • 18. Alice J Sigurdson, and Irene M Jones Second cancers after radiotherapy: any evidence for radiation-induced genomic instability? Oncogene 2003; 22:7018–7027.
  • 19. Gilbert ES, Stovall M, Gospodarowicz M, van Leeuwen FE, Andersson M, Glimelius B, Joensuu T, Lynch CF, Curtis RE, Holowaty E, Storm H, Pukkala E, van’t Veer MD, Fraumeni Jr JF, Boice Jr JD, Clarke EA and Travis LB. Radiat Res 2003; 159:161–173.
  • 20. RTOG protocol number 1005 page 29
  • 21. Chougule A. Radiation dose to contra lateral breast during treatment of breast malignancy by radiotherapy. J Can Res Ther 2007;3:8-11
  • 22. Tarcilla O, Krasin F, Lawn-Tsao L. Comparison of contralateral breast doses from 1/2 beam block and isocentric treatment techniques for patients treated with primary breast irradiation with 60CO. Int J Radiat Oncol Biol Phys 1989;17:205-10.
  • 23. A S Alzoubi, S Kandaiya, A Shukri and E Elsherbieny. Contralateral breast dose from chest wall and breast irradiation: local experience. Australas Phys Eng Sci Med 2010.
  • 24. Bhatnagar AK, Brandner E, Sonnik D, Wu A, Kalnicki S, Deutch M, et al . Intensity modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation: Initial report. Cancer Jr 2004;10:381-5.
  • 25. Bhatnagar AK, Heron DE, Deutch M, Brandndner E, Andrew WU, Kalnicki S. Does breast size affect the scatter dose to ipsilateral lung, heart or contralateral breast in primary irradiation using intensity modulated radiotherapy (IMRT)? Am J Clin Oncol 2006; 29:80-4.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Evrim Tezcanlı

Melahat Garipağaoğlu

Öznur Şenkesen

Halil Küçucük

Evren Ozan Göksel

Meriç Şengöz

Işık Aslay

Yayımlanma Tarihi 1 Eylül 2013
Yayımlandığı Sayı Yıl 2013Sayı: 3

Kaynak Göster

EndNote Tezcanlı E, Garipağaoğlu M, Şenkesen Ö, Küçucük H, Göksel EO, Şengöz M, Aslay I (01 Eylül 2013) RADYOTERAPİ UYGULANAN MEME KANSERLİ HASTALARDA SOLUNUM HAREKETLERİNİN KARŞI MEME DOZUNA ETKİSİ. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 3 123–127.