BibTex RIS Kaynak Göster

An Evaluation of The Effects of Two Chronic Immobilization Stress Protocols On Depression/anxiety- Related Behavior In Male Rats

Yıl 2019, Sayı: 3, 535 - 541, 01.09.2019

Öz

Objective: The effect of acute and chronic stress models on depression and/or anxiety-like behavior in rodents has been widely studied, but with contradictory results. This may be due to differences in the sex and age of the animals studied or inherent differences in the stress models used. Therefore, this study aimed to evaluate the effects of two immobilization stress protocols on depression/anxiety-like behaviors in adult male rats. Materials and Methods: Adult Wistar rats were randomly divided into three groups n=10 comprising: control, immobilization stress-1 45 minutes daily for a period of ten days , and immobilization stress-2 45 minutes twice a day for a period of ten days . Stress-related behavior was evaluated by means of the open field and forced swim tests. In addition, change in body weight, fasting blood glucose, and serum corticosterone were measured.Results: In the open field test, the percentage of time spent in the central area and mean velocity were significantly lower in the immobilization stress-1 and immobilization stress-2 groups as compared to the control group p < 0.05 and p < 0.01, respectively . Movement ratios were lower in both immobilization stress groups than in the control group p < 0.001 and p < 0.01, respectively . In the forced swim test, the duration of swimming, climbing and immobility behavior in both immobilization stress protocols did not differ from the control group. Serum corticosterone levels were higher in the immobilization stress-1 and immobilization stress-2 groups than in the control group p 0.05 . Conclusion: We may conclude that immobilization stress-1 and immobilization stress-2 protocols do not cause depression-like behavior in adult male rats. However, anxiety-like behaviors predominated in both stress protocol groups

Kaynakça

  • Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 2005;62:593–602. [CrossRef]
  • Frank E, Salchner P, Aldag JM, Salomé N, Singewald N, Landgraf R, Wigger A. Genetic predisposition to anxiety related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat. Behav Neurosci 2006;120:60–71. [CrossRef]
  • Pryce CR, Rüedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J. Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neurosci Biobehav Rev 2005;29:649–74. [CrossRef]
  • Bhat MS, Rao G, Murthy KD, Bhat PG. Housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats. Evid Based Complement Alternat Med 2007;4:35–42. [CrossRef]
  • Glei DA, Goldman N, Chuang YL, Weinstein M. Do chronic stressors lead to physiological dysregulation? Testing the theory of allostatic load. Psychosom Med 2007;69:769–76. [CrossRef]
  • Bali A, Jaggi AS. Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 2015;746:282–92. [CrossRef]
  • Smith C. Using Rodent Models to Simulate Stress of Physiologically Relevant Severity: When, Why and How. In: Qian X, editor. Glucocorticoids - New Recognition of Our Familiar Friend. InTechOpen; 2012. pp.212–30. [CrossRef]
  • Jaggi AS, Bhatia N, Kumar N, Singh N, Anand P, Dhawan R. A review on animal models for screening potential anti-stress agents. Neurol Sci 2011;32:993–1005. [CrossRef]
  • Kvetnansky R, Mikulaj L. Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 1970;87:738–43. [CrossRef]
  • Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev 2009;33:1089–98. [CrossRef]
  • McCarty R. Optimizing laboratory animal stress paradigms: The H-H* experimental design. Psychoneuroendocrinology 2017;75:5–14. [CrossRef]
  • Cruthirds DF, Siangco AL, Hartman CJ, Sandefur DC, Spencer JM Jr, Dyer CA, et al. Effects of immobilization stress and hormonal treatment on nociception. AANA J 2011;79:375–80.
  • Benchimol de Souza D, Silva D, Costa Silva CM, Sampaio FJB, Silva Costa W, Cortez CM. Effects of immobilization stress on kidneys of Wistar male rats: a morphometrical and stereological analysis. Kidney Blood Press Res 2011;34:424–9. [CrossRef]
  • Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 2003;463:3–33. [CrossRef]
  • Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977;266:730–2. [CrossRef]
  • Canpolat S, Ulker N, Yardimci A, Bulmus O, Ozdemir G, Sahin Z, et al. Studies on the reproductive effects of chronic treatment with agomelatine in the rat. Eur J Pharmacol 2016;770:33–9. [CrossRef]
  • Cakan P, Ozgocer T, Yildiz S. Development and validation of a corticosterone enzyme immunoassay for rat plasma. Acta Physiologica 2016;217:76–7.
  • Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 1994;61:59–64. [CrossRef]
  • Henderson ND, Turri MG, DeFries JC, Flint J. QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet 2004;34:267– 93. [CrossRef]
  • Padovan CM, Guimarães FS. Restraint-induced hypoactivity in an elevated plus-maze. Braz J Med Biol Res 2000;33:79–83. [CrossRef]
  • Campos AC, Ferreira FR, Guimarães FS, Lemos JI. Facilitation of endocannabinoid effects in the ventral hippocampus modulates anxiety-like behaviors depending on previous stress experience. Neuroscience 2010;167:238–46. [CrossRef]
  • Ampuero E, Luarte A, Santibañez M, Varas-Godoy M, Toledo J, Diaz-Veliz G, et al. Two Chronic Stress Models Based on Movement Restriction in Rats Respond Selectively to Antidepressant Drugs: Aldolase C As a Potential Biomarker. Int J Neuropsychopharmacol 2015;18. [CrossRef]
  • Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002;22:6810–8. [CrossRef]
  • Kojima S, Hoso M, Watanabe M, Matsuzaki T, Hibino I, Sasaki K. Experimental joint immobilization and remobilization in the rats. J Phys Ther Sci 2014;26:865–71. [CrossRef]
  • Southwick SM, Bremner D, Krystal JH, Charney DS. Psychobiologic research in post-traumatic stress disorder. Psychiatr Clin North Am 1994;17:251–64. [CrossRef]
  • Dhabhar FS, McEwen BS. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 1997;11:286–306. [CrossRef]
  • Reis DG, Scopinho AA, Guimarães FS, Corrêa FM, Resstel LB. Behavioral and autonomic responses to acute restraint stress are segregated within the lateral septal area of rats. PLoS ONE 2011;6:e23171. [CrossRef]
  • Marmonti E, Busquets S, Toledo M, Ricci M, Beltrà M, Gudiño V, et al. A Rat Immobilization Model Based on Cage Volume Reduction: A Physiological Model for Bed Rest? Front Physiol 2017;8:184. [CrossRef]
  • Canu MH, Darnaudéry M, Falempin M, Maccari S, Viltart O. Effect of hindlimb unloading on motor activity in adult rats: Impact of prenatal stress. Behav Neurosci 2007;121:177–85. [CrossRef]
  • Inoue T, Koyama T, Muraki A, Yamashita I. Effects of single and repeated immobilization stress on corticotrophin-releasing factor concentrations in discrete rat brain regions. Prog Neuro- psychopharmacol Biol Psychiatry 1993;17:161–70. [CrossRef]

İKİ KRONİK İMMOBİLİZASYON STRES PROTOKOLÜNÜN ERKEK SIÇANLARDA DEPRESYON/ANKSİYETE BENZERİ DAVRANIŞLAR ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ

Yıl 2019, Sayı: 3, 535 - 541, 01.09.2019

Öz

Amaç: Kemirgenlerde akut ve kronik stres modellerinin depresyon ve/veya anksiyete benzeri davranış gelişimine etkilerine yönelik çalışmalar oldukça fazla olmasına karşın çelişkili sonuçlar da söz konusudur. Bu durum hayvanların cinsiyet ve yaşlarına bağlı olabileceği gibi kullanılan stres modellerinde farklılıklarla da ilişkili olabilir. Bu nedenle, söz konusu çalışmamızda erişkin erkek sıçanlarda iki immobilizasyon stres protokolünün depresyon/anksiyete benzeri davranışlara etkisinin değerlendirilmesi amaçlanmıştır.Gereç ve Yöntem: Erişkin Wistar ırkı sıçanlar kontrol, immobilizasyon stresi-1 on gün boyunca günlük 45 dakika ve immobilizasyon stresi-2 on gün boyunca günde iki kez 45 dakika olmak üzere rastgele üç gruba n= 10 ayrıldı. Stresle ilgili davranışlar açık alan testi ve zorunlu yüzme testi ile değerlendirildi. Ayrıca, vücut ağırlığı değişimi, açlık kan glikoz seviyesi ve serum kortikosteron düzeyi de ölçüldü.Bulgular: Açık alan testinde, immobilizasyon stresi-1 ve immobilizasyon stresi-2 gruplarında merkez alanda harcanan zaman yüzdesi ve ortalama hız kontrol grubuna kıyasla önemli düzeyde düşüktü sırasıyla p

Kaynakça

  • Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 2005;62:593–602. [CrossRef]
  • Frank E, Salchner P, Aldag JM, Salomé N, Singewald N, Landgraf R, Wigger A. Genetic predisposition to anxiety related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat. Behav Neurosci 2006;120:60–71. [CrossRef]
  • Pryce CR, Rüedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J. Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neurosci Biobehav Rev 2005;29:649–74. [CrossRef]
  • Bhat MS, Rao G, Murthy KD, Bhat PG. Housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats. Evid Based Complement Alternat Med 2007;4:35–42. [CrossRef]
  • Glei DA, Goldman N, Chuang YL, Weinstein M. Do chronic stressors lead to physiological dysregulation? Testing the theory of allostatic load. Psychosom Med 2007;69:769–76. [CrossRef]
  • Bali A, Jaggi AS. Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 2015;746:282–92. [CrossRef]
  • Smith C. Using Rodent Models to Simulate Stress of Physiologically Relevant Severity: When, Why and How. In: Qian X, editor. Glucocorticoids - New Recognition of Our Familiar Friend. InTechOpen; 2012. pp.212–30. [CrossRef]
  • Jaggi AS, Bhatia N, Kumar N, Singh N, Anand P, Dhawan R. A review on animal models for screening potential anti-stress agents. Neurol Sci 2011;32:993–1005. [CrossRef]
  • Kvetnansky R, Mikulaj L. Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 1970;87:738–43. [CrossRef]
  • Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev 2009;33:1089–98. [CrossRef]
  • McCarty R. Optimizing laboratory animal stress paradigms: The H-H* experimental design. Psychoneuroendocrinology 2017;75:5–14. [CrossRef]
  • Cruthirds DF, Siangco AL, Hartman CJ, Sandefur DC, Spencer JM Jr, Dyer CA, et al. Effects of immobilization stress and hormonal treatment on nociception. AANA J 2011;79:375–80.
  • Benchimol de Souza D, Silva D, Costa Silva CM, Sampaio FJB, Silva Costa W, Cortez CM. Effects of immobilization stress on kidneys of Wistar male rats: a morphometrical and stereological analysis. Kidney Blood Press Res 2011;34:424–9. [CrossRef]
  • Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 2003;463:3–33. [CrossRef]
  • Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977;266:730–2. [CrossRef]
  • Canpolat S, Ulker N, Yardimci A, Bulmus O, Ozdemir G, Sahin Z, et al. Studies on the reproductive effects of chronic treatment with agomelatine in the rat. Eur J Pharmacol 2016;770:33–9. [CrossRef]
  • Cakan P, Ozgocer T, Yildiz S. Development and validation of a corticosterone enzyme immunoassay for rat plasma. Acta Physiologica 2016;217:76–7.
  • Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 1994;61:59–64. [CrossRef]
  • Henderson ND, Turri MG, DeFries JC, Flint J. QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet 2004;34:267– 93. [CrossRef]
  • Padovan CM, Guimarães FS. Restraint-induced hypoactivity in an elevated plus-maze. Braz J Med Biol Res 2000;33:79–83. [CrossRef]
  • Campos AC, Ferreira FR, Guimarães FS, Lemos JI. Facilitation of endocannabinoid effects in the ventral hippocampus modulates anxiety-like behaviors depending on previous stress experience. Neuroscience 2010;167:238–46. [CrossRef]
  • Ampuero E, Luarte A, Santibañez M, Varas-Godoy M, Toledo J, Diaz-Veliz G, et al. Two Chronic Stress Models Based on Movement Restriction in Rats Respond Selectively to Antidepressant Drugs: Aldolase C As a Potential Biomarker. Int J Neuropsychopharmacol 2015;18. [CrossRef]
  • Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002;22:6810–8. [CrossRef]
  • Kojima S, Hoso M, Watanabe M, Matsuzaki T, Hibino I, Sasaki K. Experimental joint immobilization and remobilization in the rats. J Phys Ther Sci 2014;26:865–71. [CrossRef]
  • Southwick SM, Bremner D, Krystal JH, Charney DS. Psychobiologic research in post-traumatic stress disorder. Psychiatr Clin North Am 1994;17:251–64. [CrossRef]
  • Dhabhar FS, McEwen BS. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 1997;11:286–306. [CrossRef]
  • Reis DG, Scopinho AA, Guimarães FS, Corrêa FM, Resstel LB. Behavioral and autonomic responses to acute restraint stress are segregated within the lateral septal area of rats. PLoS ONE 2011;6:e23171. [CrossRef]
  • Marmonti E, Busquets S, Toledo M, Ricci M, Beltrà M, Gudiño V, et al. A Rat Immobilization Model Based on Cage Volume Reduction: A Physiological Model for Bed Rest? Front Physiol 2017;8:184. [CrossRef]
  • Canu MH, Darnaudéry M, Falempin M, Maccari S, Viltart O. Effect of hindlimb unloading on motor activity in adult rats: Impact of prenatal stress. Behav Neurosci 2007;121:177–85. [CrossRef]
  • Inoue T, Koyama T, Muraki A, Yamashita I. Effects of single and repeated immobilization stress on corticotrophin-releasing factor concentrations in discrete rat brain regions. Prog Neuro- psychopharmacol Biol Psychiatry 1993;17:161–70. [CrossRef]
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Zafer Şahin

Alpaslan Özkürkçüler

Aynur Koç

Hatice Solak

Raviye Özen Koca

Pınar Çakan

Zülfikare Işık Solak Görmüş

Selim Kutlu

Yayımlanma Tarihi 1 Eylül 2019
Yayımlandığı Sayı Yıl 2019Sayı: 3

Kaynak Göster

EndNote Şahin Z, Özkürkçüler A, Koç A, Solak H, Koca RÖ, Çakan P, Görmüş ZIS, Kutlu S (01 Eylül 2019) An Evaluation of The Effects of Two Chronic Immobilization Stress Protocols On Depression/anxiety- Related Behavior In Male Rats. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 3 535–541.