Research Article
BibTex RIS Cite

Meme Kanseri Radyoterapisinde IMRT ve Konformal Radyoterapi Uygulamaları için Tedavi Planlama Sisteminde Planlanan Doz Dağılımının Rando Fantomda Ölçülen Doz Dağılımıyla Uyumunun Araştırılması

Year 2021, , 244 - 250, 01.04.2021
https://doi.org/10.31067/acusaglik.849386

Abstract

Amaç
Bu çalışmada, meme kanseri radyoterapisinde kullanılan 3B konformal radyoterapi (3BKRT), Alan içinde alan (Field in Field,FinF) ve yoğunluk ayarlı radyoterapi (IMRT) tekniklerinin planlanan-ölçülen doz farklarının araştırılması amaçlanmıştır.

Gereç ve Yöntem
Bu çalışma için su eşdeğeri bolus materyalinden meme şeklinde fantomlar (MŞF) oluşturularak, Alderson rando fantom üzerine yerleştirilmiş ve planlama amaçlı bilgisayarlı tomografisi çekilmiştir. Hedef yapı ve kritik organlar konturlandıktan sonra3BKRT, FinF ve IMRT teknikleri için planlama (Varian Eclipse 8,6, PencilBeam) yapılmıştır.MŞF‘nın izomerkezden geçen sagital ve transvers düzlemlerine ayrı ayrı Gafchromic EBT2 filmler yerleştirilmiş ve her bir teknik için fantom ikişer kez ışınlanmıştır.İzomerkezden ve izomerkezin 1’er cm anterior-posterir, superior – inferior ve sağ-solundan geçen eksenlerden film üzerinden ölçülen dozlar aynı eksenlerde tedavi planlama sisteminden (TPS) okunan dozlarla kaşrılaştırılmıştır.

Bulgular
Uygulanan tekniklerde planlanan-ölçülen doz farkı en yüksek %4.5 ile FinF tekniğinde, en az %0.05 ile IMRT tekniğinde bulunmuştur. Farkların %66.6‘sında ölçülen doz planlanandan daha yüksek bulunurken, bütün farkların %93‘ünde fark %3‘ün altında bulunmuştur. En az fark izomerkezden geçen eksenler boyunca görülürken, izomerkezden uzaklaştıkça farkın artığı bulunmuştur. Eksenlerle farklar arasında anlamlı bir ilişki bulunamamıştır.

Sonuç
TPS’te hesaplanan doz dağılımları rando fantom üzerinde film ile ölçülen doz dağılımlarıyla karşılaştırıldığında, en iyi IMRT için olmak üzere her üç teknik için de uyumlu bulunmuştur.

References

  • 1. American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society; 2018
  • 2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBACAN 2012 v1.0. Cancer incidence and mortality worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer.
  • 3. Overgaard M, Hansen PS, Overgaard J, Rose C, Andersson M, Bach F, Kjaer M, Gadeberg CC, Mouridsen HT, Jensen MB, and Zedeler K, for the Danish Breast Cancer Cooperative Group 82b Trial. Postoperative Radiotherapy in High-Risk Premenopausal Women with Breast Cancer Who Receive Adjuvant Chemotherapy. N Engl J Med 1997; 337:949-955.
  • 4. Ragaz J, Jackson SM, Le N, Plenderleith IH, Spinelli JJ, Basco VE, Wilson KS, Knowling MA, Coppin CML, Paradis M, Coldman AJ, and Olivo IA. Adjuvant Radiotherapy and Chemotherapy in Node-Positive Premenopausal Women with Breast Cancer. N Engl J Med 1997; 337:956-962.
  • 5. Early Breast Cancer Trialists' Collaborative Group. Effects of Radiotherapy and Surgery in Early Breast Cancer — An Overview of the Randomized Trials. N Engl J Med 1995; 333:1444-1456
  • 6. Hurkmans CW, Borger JA, Bos LJ. Cardiac and lung complication probabilities after breast cancer irradiation. Radiotherapy and Oncology 2000; 55:145-151.
  • 7. Halperin EC, Perez CA, Brady LW (eds). Principle and Practice of Radiation Oncology. (5th ed.) Lippincott Williams & Wilkins, Philadelphia, 2008.
  • 8. Gunderson LL, Tepper JE (eds). Clinical Radiation Oncology(3th ed.). Elsevier & Saunders, Philadelphia, 2011.
  • 9. Lu JJ, Brady LW (ed). Decision Making in Radiation Oncology (1st ed). Springer-Verlag, Heidelberg, 2011.
  • 10. Webb S. The physical basis of imrt and inverse planning. Br J Radiol 2003;76:678–89.
  • 11. Almberg SS, Lindmo T, Frengen J Superficial doses in breast cancer radiotherapy using conventional and IMRT techniques: A film-based phantom study. Radiother Oncol. 2011; 100 259-264
  • 12. Heukelom S, Lanson JH, van Tienhoven G, Mijnheer BJ. In vivo dosimetry during tangential breast treatment. Radiother Oncol. 1991; 22(4):269-79.
  • 13. Mijnheer BJ, Heukelom S, Lanson JH, van Battum LJ, van Bree NA, van Tienhoven G. Should inhomogeneity corrections be applied during treatment planning of tangential breast irradiation? Radiother Oncol. 1991; 22(4):239-44.
  • 14. Bogaerts R, Van Esch A, Reymen R, Huyskens D. A method to estimate the transit dose on the beam axis for verification of dose delivery with portal images. Radiother Oncol. 2000;54(1):39-46.
  • 15. Tezcanli EK, Goksel EO, Yildiz E, Garipagaoglu M, Senkesen O,Kucucuk H, Sengöz KM, Aslay I. Does Radiotherapy Planning Without Breath Control Compensate Intra-Fraction Heart and Its Compartments' Movement?; Breast Cancer Res Treat. 2011; (126) 85–9.
  • 16. Tezcanlı E, Garipağaoğlu M, Şenkesen Ö, Küçucük H, Göksel E, Şengöz M, Aslay I. Effect of Breathing on Contralateral Breast Doses in Patients with Breast Carcinoma Receiving Radiotherapy. Acıbadem Üni Sağ. Bil. Derg. 2013; (4): 3, 123-127.
  • 17. George R, Keall PJ, Kini VR, Vedam SS, Siebers JB, Wu Q, Lauterbach MH, Arthur DW, Mohan R. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys. 2003; (30):4, 552-562
  • 18. Liu Q, McDermott P, Burmeister J. Effect of respiratory motion on the delivery of breast radiotherapy using SMLC intensity modulation. Med Phys. 2007 (34):1, 347-351.

Investigation of The Compliance of Planned Dose Distribution on The Treatment Planning System with Measured Dose Distribution in Rando Phantom For IMRT and Conformal Radiotherapy Applications

Year 2021, , 244 - 250, 01.04.2021
https://doi.org/10.31067/acusaglik.849386

Abstract

Purpose
This study investigates planned and measured dose differences for 3 dimensional conformal radiotherapy (3DCRT), Field in Field (FinF) and Intensity-Modulated Radiation Therapy (IMRT) techniques for breast cancer radiotherapy.

Material and Method
Breast shaped phantom (BSP) was fabricated with water equevelent bolus material and BSP was placed on Alderson rando phantom, then planning computerized tomography (CT) images were obtained. Target volume andnormal tissues were delineated on these images. Treatment planning was performed for 3DCRT, FinF and IMRT techniques (Varian, Eclipse 8,6, PencilBeam). EBT2 films were placed into sagittal and transverse planes of BSP which intersect with the isocenter. After thatfilms were irradiated for each calculated plans in two times. The measured doses with film from the isocenter and from the axes passing 1 cm anterior-posterior, superior – inferior and right-left of the isocenter were compared with the doses read from the treatment planning system (TPS) on the same axes.

Results
Among applied techniques, the maximum and minimum dose differences for measured and calculated doses were 4.5 % and 0.05 % for FinF and IMRT techniques, respectively. Measured doses were higher than calculated doses for 66.6% of all points; however 93% of total points had a difference less than 3 %. Dose differences were minimum on axes that intersect with the isocenter and were directly correlated with the distance from the isocenter. There was no relation between dose differences and directions on axes.

Conclusion
Dose distributions calculated in TPS were found to be compatible for all three techniques when compared to dose distributions measured by film on rando Phantom. The best compliance was found for IMRT technique.

References

  • 1. American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society; 2018
  • 2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBACAN 2012 v1.0. Cancer incidence and mortality worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer.
  • 3. Overgaard M, Hansen PS, Overgaard J, Rose C, Andersson M, Bach F, Kjaer M, Gadeberg CC, Mouridsen HT, Jensen MB, and Zedeler K, for the Danish Breast Cancer Cooperative Group 82b Trial. Postoperative Radiotherapy in High-Risk Premenopausal Women with Breast Cancer Who Receive Adjuvant Chemotherapy. N Engl J Med 1997; 337:949-955.
  • 4. Ragaz J, Jackson SM, Le N, Plenderleith IH, Spinelli JJ, Basco VE, Wilson KS, Knowling MA, Coppin CML, Paradis M, Coldman AJ, and Olivo IA. Adjuvant Radiotherapy and Chemotherapy in Node-Positive Premenopausal Women with Breast Cancer. N Engl J Med 1997; 337:956-962.
  • 5. Early Breast Cancer Trialists' Collaborative Group. Effects of Radiotherapy and Surgery in Early Breast Cancer — An Overview of the Randomized Trials. N Engl J Med 1995; 333:1444-1456
  • 6. Hurkmans CW, Borger JA, Bos LJ. Cardiac and lung complication probabilities after breast cancer irradiation. Radiotherapy and Oncology 2000; 55:145-151.
  • 7. Halperin EC, Perez CA, Brady LW (eds). Principle and Practice of Radiation Oncology. (5th ed.) Lippincott Williams & Wilkins, Philadelphia, 2008.
  • 8. Gunderson LL, Tepper JE (eds). Clinical Radiation Oncology(3th ed.). Elsevier & Saunders, Philadelphia, 2011.
  • 9. Lu JJ, Brady LW (ed). Decision Making in Radiation Oncology (1st ed). Springer-Verlag, Heidelberg, 2011.
  • 10. Webb S. The physical basis of imrt and inverse planning. Br J Radiol 2003;76:678–89.
  • 11. Almberg SS, Lindmo T, Frengen J Superficial doses in breast cancer radiotherapy using conventional and IMRT techniques: A film-based phantom study. Radiother Oncol. 2011; 100 259-264
  • 12. Heukelom S, Lanson JH, van Tienhoven G, Mijnheer BJ. In vivo dosimetry during tangential breast treatment. Radiother Oncol. 1991; 22(4):269-79.
  • 13. Mijnheer BJ, Heukelom S, Lanson JH, van Battum LJ, van Bree NA, van Tienhoven G. Should inhomogeneity corrections be applied during treatment planning of tangential breast irradiation? Radiother Oncol. 1991; 22(4):239-44.
  • 14. Bogaerts R, Van Esch A, Reymen R, Huyskens D. A method to estimate the transit dose on the beam axis for verification of dose delivery with portal images. Radiother Oncol. 2000;54(1):39-46.
  • 15. Tezcanli EK, Goksel EO, Yildiz E, Garipagaoglu M, Senkesen O,Kucucuk H, Sengöz KM, Aslay I. Does Radiotherapy Planning Without Breath Control Compensate Intra-Fraction Heart and Its Compartments' Movement?; Breast Cancer Res Treat. 2011; (126) 85–9.
  • 16. Tezcanlı E, Garipağaoğlu M, Şenkesen Ö, Küçucük H, Göksel E, Şengöz M, Aslay I. Effect of Breathing on Contralateral Breast Doses in Patients with Breast Carcinoma Receiving Radiotherapy. Acıbadem Üni Sağ. Bil. Derg. 2013; (4): 3, 123-127.
  • 17. George R, Keall PJ, Kini VR, Vedam SS, Siebers JB, Wu Q, Lauterbach MH, Arthur DW, Mohan R. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys. 2003; (30):4, 552-562
  • 18. Liu Q, McDermott P, Burmeister J. Effect of respiratory motion on the delivery of breast radiotherapy using SMLC intensity modulation. Med Phys. 2007 (34):1, 347-351.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Radiology and Organ Imaging
Journal Section Research Articles
Authors

Özlem Göksel

Evren Ozan Göksel

Halil Küçücük

Melahat Garipağaoğlu

Publication Date April 1, 2021
Submission Date February 17, 2020
Published in Issue Year 2021

Cite

EndNote Göksel Ö, Göksel EO, Küçücük H, Garipağaoğlu M (April 1, 2021) Meme Kanseri Radyoterapisinde IMRT ve Konformal Radyoterapi Uygulamaları için Tedavi Planlama Sisteminde Planlanan Doz Dağılımının Rando Fantomda Ölçülen Doz Dağılımıyla Uyumunun Araştırılması. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 12 2 244–250.