BibTex RIS Cite

Dna Methylation and Its Relation With Diseases

Year 2016, Issue: 2, 61 - 68, 01.06.2016

Abstract

DNA methylation is one of the most investigated epigenetic mechanisms in recent years. With advances in technology, analysis related to this mechanism has shown that methylation has different effects on specific diseases. DNA methylation is a biochemical process that results in differences in expression of many genes, errors in which may be linked to a variety of human diseases. Understanding the unknown etiology of DNA methylation may contribute to explaining the pathophysiology of related diseases

References

  • Bird A. Perceptions of epigenetics. Nature 2007; 447: 396-8.
  • Waddington CH. The epigenotype. Endeavour 1942; 1: 18-20.
  • Jiang Y, Bressler J, Beaudet LA. Epigenetics and human disease. Annu Rev Genet 2004; 5: 479-510.
  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007; 447 (7143): 425-32.
  • Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6: 597-610
  • Rodenheiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006; 174 (3): 341-8.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6-21.
  • Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO reports 2011; 12: 647-56.
  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013; 14: 204-20.
  • Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002; 99 (6): 3740-5.
  • McGowen PO, Szyf M. The epigenetics of social adversity in early life: Implications for mental health outcomes. Neurobiol Dis 2010; 39 (1): 66-72.
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484-92.
  • Helmann A, Chess A. Gene body-specific methylation on the active X chromosome. Science 2007; 315: 1141-43.
  • Gupta R, Nagarajan A, Wajapeyee N. Advances in genome-wide DNA methylation analysis. BioTechniques 2010; 49: 3-13.
  • Shen L, Waterland RA. Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 2007; 10: 576-81.
  • Ehrlich M, Gama-Sosa MA, Huang LH, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucl Acids Res 1982; 10: 2709-21.
  • Yang AS, Estecio MR, Doshi K, et al. A simple method for estimating global DNA methylation using bisulfite PCR of repetetive DNA elements. Nucl Acids Res 2004; 32 (3): e38.
  • Clark SJ, Harrison J, Paul CL, et al. High sensitivity mapping of methylated cytosines. Nucl Acids Res 1994; 22: 2990-7.
  • Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter- specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37: 853-62.
  • Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821-6.
  • Eads CA, Danenberg KD, Kawakami K. MethyLight: a highthroughput assay to measure DNA methylation. Nucl Acids Res 2000; 28: E32.
  • Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNAstrands. Proc Natl Acad Sci USA 1992; 89: 1827-31.
  • Colella S, Shen L, Baggerly KA, et al. Sensitive and quantitative universal pyrosequencing methylation analysis of CpG sites. Biotechniques 2003; 35: 146-50.
  • Feinberg AP, Cui H, Ohlsson R. DNA Methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Sem Canc Biol 2002; 12: 389-98.
  • Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2: 21-32.
  • Nicholls RD, Knepper JL. Genome organization, function and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2001; 2: 153-75.
  • Goldstone AP. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab 2004; 15: 12-20.
  • Sutcliffe J, Nakao M, Christian S, et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet 1994; 8: 52-8.
  • Dan B. Angelman syndrome: Current understanding and research prospects. Epilepsia 2009; 50 (11): 2331-9.
  • Everett CM, Wood NW. Trinucleotide repeats and neurodegenerative disease. Brain 2004; 127: 2385-405.
  • Crawford DC, Acuna JM, Sherman SL. FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 2001; 3: 359-71.
  • Oberle I, Rousseau F, Heitz D, et al. Instability of a 550-base pair segment and abnormal methylation in fragile X syndrome. Science 1991; 252: 1097-102.
  • Klippel JH. Systemic lupus erythematosus: demographics, prognosis and outcome. J Rheumatol 1997; 24: 67-71.
  • Richardson B, Scheinbart L, Strahler J, et al. DNA methylation and autoimmune disease. Clin Immunol 2003; 109: 72-79.
  • Richardson B, et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33: 1665-73.
  • Smeets DF, Mooq U, Weemaes CM, et al. ICF syndrome: a new case and review of the literature. Hum Genet 1994; 94: 240-46.
  • Ehrlich M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 2003; 109: 17-28.
  • Xu GL, Bestor TH, Bourc’his D, et al. Chromosome instability and imunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999; 402: 187-91.
  • Hansen RS, Wijimenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA. 1999; 96: 14412-7.
  • Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4: 1-11.
  • Widschwendter M, Jiang G, Woods C, et al. DNA hypomethylation and ovarian cancer biology. Cancer Res 2004; 64: 4472-80.
  • Strichman-Almashanu LZ, Lee RS, Onyango PO, et al. A genome- wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Gen Res 2002; 12: 543-54.
  • Costello JF, Frühwald MC, Smiraqlia DJ, et al. Aberrant CpG island methylation has a non-random and tumor type spesific patterns. Nat Genet 2000; 25: 132-8.
  • Kazuhisa N, Whitaker JW, Boyle DL, et al. DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 2012; 0: 1-8.
  • Majithia V, Geraci SA. Rheumatoid arthritis: diagnosis and management. Am J Med 2007; 120 (11): 936-9.
  • Kirectepe AK, Kasapcopur O, Arisoy N, et al. Analysis of MEFV exon methylation and expression patterns in familial Mediterranean fever. BMC Med Genet 2011; 12(105): 1-6.
  • Schaner PE, Gumucio DL. Familial Mediterranean Fever in the Post- Genomic Era: How an Ancient Disease is Providing New Insights into Inflammatory Pathways. Current Drug Targets - Inflammation & Allergy 2005; 4 (1): 67-76.
  • Suarez-Alvarez B, Rodriguez RM, Fraga MF, et al. DNA Methylation: a promising landscape for immune system-related diseases. Cell 2012; 28 (10): 506-14.
  • Reinius LE, Acevedo N, Joerink M, et al. Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. Plos One 2012; 7 (7): 1-13.

DNA Metilasyonu ve Hastalıklarla İlişkisi

Year 2016, Issue: 2, 61 - 68, 01.06.2016

Abstract

DNA metilasyonu, yeni gelişmelerle birlikte araştırmacılara merak uyandıran en temel epigenetik mekanizmalardan biridir. Teknolojinin gelişmesiyle hızlı ilerlemeler kaydeden analiz yöntemleri sayesinde metilasyonun farklı rollerinin ortaya çıkması, özellikle hastalıklar üzerindeki etkilerinin keşfedilmesini kolaylaştırmıştır. DNA’nın kimyasal değişimiyle genlerde ifadesel farklılıklar sağlayan bu mekanizmada meydana gelebilecek bir hata ya da düzensizlik, birçok hastalığın temelinde yatan sorunları oluşturabilir. DNA metilasyonunun bilinmeyen yönlerinin ortaya çıkarılması, hastalıkların patogenezinin aydınlatılmasına büyük katkılar sağlayacaktır

References

  • Bird A. Perceptions of epigenetics. Nature 2007; 447: 396-8.
  • Waddington CH. The epigenotype. Endeavour 1942; 1: 18-20.
  • Jiang Y, Bressler J, Beaudet LA. Epigenetics and human disease. Annu Rev Genet 2004; 5: 479-510.
  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007; 447 (7143): 425-32.
  • Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6: 597-610
  • Rodenheiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006; 174 (3): 341-8.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6-21.
  • Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO reports 2011; 12: 647-56.
  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013; 14: 204-20.
  • Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002; 99 (6): 3740-5.
  • McGowen PO, Szyf M. The epigenetics of social adversity in early life: Implications for mental health outcomes. Neurobiol Dis 2010; 39 (1): 66-72.
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484-92.
  • Helmann A, Chess A. Gene body-specific methylation on the active X chromosome. Science 2007; 315: 1141-43.
  • Gupta R, Nagarajan A, Wajapeyee N. Advances in genome-wide DNA methylation analysis. BioTechniques 2010; 49: 3-13.
  • Shen L, Waterland RA. Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 2007; 10: 576-81.
  • Ehrlich M, Gama-Sosa MA, Huang LH, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucl Acids Res 1982; 10: 2709-21.
  • Yang AS, Estecio MR, Doshi K, et al. A simple method for estimating global DNA methylation using bisulfite PCR of repetetive DNA elements. Nucl Acids Res 2004; 32 (3): e38.
  • Clark SJ, Harrison J, Paul CL, et al. High sensitivity mapping of methylated cytosines. Nucl Acids Res 1994; 22: 2990-7.
  • Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter- specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37: 853-62.
  • Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821-6.
  • Eads CA, Danenberg KD, Kawakami K. MethyLight: a highthroughput assay to measure DNA methylation. Nucl Acids Res 2000; 28: E32.
  • Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNAstrands. Proc Natl Acad Sci USA 1992; 89: 1827-31.
  • Colella S, Shen L, Baggerly KA, et al. Sensitive and quantitative universal pyrosequencing methylation analysis of CpG sites. Biotechniques 2003; 35: 146-50.
  • Feinberg AP, Cui H, Ohlsson R. DNA Methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Sem Canc Biol 2002; 12: 389-98.
  • Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2: 21-32.
  • Nicholls RD, Knepper JL. Genome organization, function and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2001; 2: 153-75.
  • Goldstone AP. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab 2004; 15: 12-20.
  • Sutcliffe J, Nakao M, Christian S, et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet 1994; 8: 52-8.
  • Dan B. Angelman syndrome: Current understanding and research prospects. Epilepsia 2009; 50 (11): 2331-9.
  • Everett CM, Wood NW. Trinucleotide repeats and neurodegenerative disease. Brain 2004; 127: 2385-405.
  • Crawford DC, Acuna JM, Sherman SL. FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 2001; 3: 359-71.
  • Oberle I, Rousseau F, Heitz D, et al. Instability of a 550-base pair segment and abnormal methylation in fragile X syndrome. Science 1991; 252: 1097-102.
  • Klippel JH. Systemic lupus erythematosus: demographics, prognosis and outcome. J Rheumatol 1997; 24: 67-71.
  • Richardson B, Scheinbart L, Strahler J, et al. DNA methylation and autoimmune disease. Clin Immunol 2003; 109: 72-79.
  • Richardson B, et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33: 1665-73.
  • Smeets DF, Mooq U, Weemaes CM, et al. ICF syndrome: a new case and review of the literature. Hum Genet 1994; 94: 240-46.
  • Ehrlich M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 2003; 109: 17-28.
  • Xu GL, Bestor TH, Bourc’his D, et al. Chromosome instability and imunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999; 402: 187-91.
  • Hansen RS, Wijimenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA. 1999; 96: 14412-7.
  • Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4: 1-11.
  • Widschwendter M, Jiang G, Woods C, et al. DNA hypomethylation and ovarian cancer biology. Cancer Res 2004; 64: 4472-80.
  • Strichman-Almashanu LZ, Lee RS, Onyango PO, et al. A genome- wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Gen Res 2002; 12: 543-54.
  • Costello JF, Frühwald MC, Smiraqlia DJ, et al. Aberrant CpG island methylation has a non-random and tumor type spesific patterns. Nat Genet 2000; 25: 132-8.
  • Kazuhisa N, Whitaker JW, Boyle DL, et al. DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 2012; 0: 1-8.
  • Majithia V, Geraci SA. Rheumatoid arthritis: diagnosis and management. Am J Med 2007; 120 (11): 936-9.
  • Kirectepe AK, Kasapcopur O, Arisoy N, et al. Analysis of MEFV exon methylation and expression patterns in familial Mediterranean fever. BMC Med Genet 2011; 12(105): 1-6.
  • Schaner PE, Gumucio DL. Familial Mediterranean Fever in the Post- Genomic Era: How an Ancient Disease is Providing New Insights into Inflammatory Pathways. Current Drug Targets - Inflammation & Allergy 2005; 4 (1): 67-76.
  • Suarez-Alvarez B, Rodriguez RM, Fraga MF, et al. DNA Methylation: a promising landscape for immune system-related diseases. Cell 2012; 28 (10): 506-14.
  • Reinius LE, Acevedo N, Joerink M, et al. Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. Plos One 2012; 7 (7): 1-13.
There are 49 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Cansın Güler

Banu Balcı Peynircioğlu

Publication Date June 1, 2016
Published in Issue Year 2016Issue: 2

Cite

EndNote Güler C, Peynircioğlu BB (June 1, 2016) DNA Metilasyonu ve Hastalıklarla İlişkisi. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 2 61–68.