Research Article
BibTex RIS Cite

In vitro antibacterial activity of NET1 and NET3 peptide against carbapenem-resistant and susceptible Klebsiella pneumoniae

Year 2025, Volume: 16 Issue: 4, 527 - 533, 01.10.2025
https://doi.org/10.31067/acusaglik.1703845

Abstract

Purpose: In recent years, antimicrobial resistance is one of the biggest and most important reasons for the difficulties in treating infections and threatening public health. One of the priority pathogens listed by the World Health Organization is carbapenem resistant Enterobacterales (Klebsiella pneumoniae). Antimicrobial peptides are considered as alternatives to antibiotics due to their broad-spectrum antibacterial properties and the difficulty of developing resistance. In this study, we investigated the antimicrobial effects of NET1 and NET3 peptides, which are known to have antimicrobial effects on different bacteria, on carbapenem-resistant and -susceptible K. pneumoniae control strains.

Methods: NET1 and NET3 peptides were synthesized and purified. In vitro antibacterial activity of the peptides against carbapenem-resistant and susceptible K. pneumoniae was demonstrated by minimum inhibitory concentration test and minimum bactericidal concentration test. In addition, the mechanism of action of the peptides on carbapenem-resistant K. pneumoniae cells was investigated by scanning electron microscopy.

Results: The minimum inhibitory concentration and minimum bactericidal concentration results of NET1 peptide are 4 µg/ml for carbapenem-resistant K. pneumoniae and 2 µg/ml for NET3 peptide. Scanning electron microscope imaging has shown that NET3 peptide exhibits antibacterial activity by damaging the carbapenem-resistant K. pneumoniae cell membrane and disrupting the permeability of the outer membrane.

Conclusion: When our results are evaluated, we show that NET1 and NET3 peptide has the potential to be a new generation broad-spectrum antibiotic candidate that can be used for the treatment of carbapenem-resistant K. pneumoniae infection.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supporting Institution

Acibadem University

References

  • 1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015;109:309–18. https://doi.org/10.1179/2047773215Y.0000000030.
  • 2. Sartorius B, Gray AP, Davis Weaver N, et al. The burden of bacterial antimicrobial resistance in the WHO African region in 2019: a crosscountry systematic analysis. Lancet Glob Health 2024;12:e201–16. https://doi.org/10.1016/S2214-109X23.00539-9.
  • 3. Ferdinand AS, McEwan C, Lin C, et al. Development of a crosssectoral antimicrobial resistance capability assessment framework. BMJ Glob Health 2024;9:e013280. https://doi.org/10.1136/ bmjgh-2023-013280.
  • 4. El-Aziz NKA, El-Hamid MIA, Bendary MM, et al. Existence of vancomycin resistance among methicillin resistant s. aureus recovered from animal and human sources in Egypt. Slovenian Veterinary Research 2018;55:221–30. https://doi.org/10.26873/ SVR-649-2018.
  • 5. Ghaly MF, Shaheen AA, Bouhy AM, et al. Alternative therapy to manage otitis media caused by multidrug-resistant fungi. Arch Microbiol 2020;202:1231–40. https://doi.org/10.1007/ s00203-020-01832-z.
  • 6. Lim J-S, Chai Y-Y, Ser W-X, et al. Novel drug candidates against antibiotic-resistant microorganisms: A review. Iran J Basic Med Sci 2024;27:134–50. https://doi.org/10.22038/ijbms.2023.71672.15593.
  • 7. Ruckert A, Lake S, Van Katwyk SR. Developing a protocol on antimicrobial resistance through WHO’s pandemic treaty will protect lives in future pandemics. Global Health 2024;20:10. https:// doi.org/10.1186/s12992-024-01015-1.
  • 8. Ahmed SK, Hussein S, Qurbani K, et al. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2024;2:100081. https://doi.org/10.1016/j. glmedi.2024.100081.
  • 9. Asghar A, Khalid A, Baqar Z, et al. An insights into emerging trends to control the threats of antimicrobial resistance AMR.: an address to public health risks. Arch Microbiol 2024;206:72. https://doi. org/10.1007/s00203-023-03800-9.
  • 10. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019;43:123–44. https://doi.org/10.1093/femsre/fuy043.
  • 11. Vincent J-L. International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA 2009;302:2323. https://doi. org/10.1001/jama.2009.1754.
  • 12. Abdulall AK, Tawfick MM, El Manakhly AR, et al. Carbapenemresistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. European Journal of Clinical Microbiology & Infectious Diseases 2018;37:1647–52. https://doi.org/10.1007/s10096-018-3294-7.
  • 13. Zhang X, Shi S, Yao Z, et al. Antimicrobial peptide WAM-1: a promising antibacterial and anti-inflammatory drug against carbapenemresistant Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy 2022;77:1903–11. https://doi.org/10.1093/jac/ dkac128.
  • 14. Lee C-C, Lee C-H, Hong M-Y, et al. Propensity-matched analysis of the impact of extended-spectrum β-lactamase production on adults with community-onset Escherichia coli, Klebsiella species, and Proteus mirabilis bacteremia. Journal of Microbiology, Immunology and Infection 2018;51:519–26. https://doi.org/10.1016/j. jmii.2017.05.006.
  • 15. Shu L, Lu Q, Sun R, et al. Prevalence and phenotypic characterization of carbapenem-resistant Klebsiella pneumoniae strains recovered from sputum and fecal samples of ICU patients in Zhejiang Province, China. Infect Drug Resist 2018;Volume 12:11–8. https://doi. org/10.2147/IDR.S175823.
  • 16. Qureshi ZA, Paterson DL, Potoski BA, et al. Treatment Outcome of Bacteremia Due to KPC-Producing Klebsiella pneumoniae: Superiority of Combination Antimicrobial Regimens. Antimicrob Agents Chemother 2012;56:2108–13. https://doi.org/10.1128/ AAC.06268-11.
  • 17. Zhang Y, Guo L-Y, Song W-Q, et al. Risk factors for carbapenemresistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients. BMC Infect Dis 2018;18:248. https://doi.org/10.1186/s12879-018-3160-3.
  • 18. Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:785–96. https://doi.org/10.1016/ S1473-309913.70190-7.
  • 19. Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 2018;8. https://doi.org/10.3389/fcimb.2018.00004.
  • 20. de Souza CM, da Silva ÁP, Júnior NGO, et al. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022;43:335–48. https://doi.org/10.1016/j.tips.2021.12.006.
  • 21. Unubol N, Selim Cinaroglu S, Elmas MA, et al. Peptide Antibiotics Developed by Mimicking Natural Antimicrobial Peptides. Clinical Microbiology: Open Access 2017;06. https://doi. org/10.4172/2327-5073.1000291.
  • 22. Polat T, Soyhan İ, Cebeci S, et al. New-generation biofilm effective antimicrobial peptides and a real-time anti-biofilm activity assay: CoMIC. Appl Microbiol Biotechnol 2024;108:316. https://doi. org/10.1007/s00253-024-13134-1.
  • 23. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009;9:228–36. https://doi.org/10.1016/S1473-309909.70054-4.
  • 24. Queenan AM, Bush K. Carbapenemases: the Versatile β-Lactamases. Clin Microbiol Rev 2007;20:440–58. https://doi.org/10.1128/ CMR.00001-07.
  • 25. Antibiotic resistance threats in the United States, 2019. Atlanta, Georgia: 2019. https://doi.org/10.15620/cdc:82532.
  • 26. Zhou H, Du X, Wang Y, et al. Antimicrobial peptide A20L: in vitro and in vivo antibacterial and antibiofilm activity against carbapenemresistant Klebsiella pneumoniae. Microbiol Spectr 2024;12. https:// doi.org/10.1128/spectrum.03979-23.
  • 27. Zhao D, Tang M, Hu P, et al. Antimicrobial peptide Hs02 with rapid bactericidal, anti-biofilm, and anti-inflammatory activity against carbapenem-resistant Klebsiella pneumoniae and Escherichia coli. Microbiol Spectr 2025;13. https://doi.org/10.1128/ spectrum.01050-24.
  • 28. Hitt SJ, Bishop BM, van Hoek ML. Komodo-dragon cathelicidininspired peptides are antibacterial against carbapenem-resistant Klebsiella pneumoniae. J Med Microbiol 2020;69:1262–72. https:// doi.org/10.1099/jmm.0.001260.
  • 29. Mohammadpour D, Memar MY, Leylabadlo HE, et al. Carbapenem- Resistant Klebsiella pneumoniae: A comprehensive review of phenotypic and genotypic methods for detection. The Microbe 2025;6:100246. https://doi.org/10.1016/j.microb.2025.100246.
  • 30. Wang F, Zhou Q, Yang X, et al. Evaluation of ceftazidime/ avibactam alone and in combination with amikacin, colistin and tigecycline against Klebsiella pneumoniae carbapenemaseproducing K. pneumoniae by in vitro time-kill experiment. PLoS One 2021;16:e0258426. https://doi.org/10.1371/journal.pone.0258426.
There are 30 citations in total.

Details

Primary Language English
Subjects Infectious Diseases
Journal Section Research Articles
Authors

Nihan Ünübol 0000-0003-4644-112X

Tuba Polat 0000-0001-6957-035X

Merve Açıkel Elmas 0000-0002-5992-8191

Meltem Ayaş 0000-0003-1920-9261

Early Pub Date September 9, 2025
Publication Date October 1, 2025
Submission Date May 22, 2025
Acceptance Date July 21, 2025
Published in Issue Year 2025 Volume: 16 Issue: 4

Cite

EndNote Ünübol N, Polat T, Açıkel Elmas M, Ayaş M (October 1, 2025) In vitro antibacterial activity of NET1 and NET3 peptide against carbapenem-resistant and susceptible Klebsiella pneumoniae. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 16 4 527–533.