In vitro antibacterial activity of NET1 and NET3 peptide against carbapenem-resistant and susceptible Klebsiella pneumoniae
Year 2025,
Volume: 16 Issue: 4, 527 - 533, 01.10.2025
Nihan Ünübol
,
Tuba Polat
Merve Açıkel Elmas
,
Meltem Ayaş
Abstract
Purpose: In recent years, antimicrobial resistance is one of the biggest and most important reasons for the difficulties in treating infections and threatening public health. One of the priority pathogens listed by the World Health Organization is carbapenem resistant Enterobacterales (Klebsiella pneumoniae). Antimicrobial peptides are considered as alternatives to antibiotics due to their broad-spectrum antibacterial properties and the difficulty of developing resistance. In this study, we investigated the antimicrobial effects of NET1 and NET3 peptides, which are known to have antimicrobial effects on different bacteria, on carbapenem-resistant and -susceptible K. pneumoniae control strains.
Methods: NET1 and NET3 peptides were synthesized and purified. In vitro antibacterial activity of the peptides against carbapenem-resistant and susceptible K. pneumoniae was demonstrated by minimum inhibitory concentration test and minimum bactericidal concentration test. In addition, the mechanism of action of the peptides on carbapenem-resistant K. pneumoniae cells was investigated by scanning electron microscopy.
Results: The minimum inhibitory concentration and minimum bactericidal concentration results of NET1 peptide are 4 µg/ml for carbapenem-resistant K. pneumoniae and 2 µg/ml for NET3 peptide. Scanning electron microscope imaging has shown that NET3 peptide exhibits antibacterial activity by damaging the carbapenem-resistant K. pneumoniae cell membrane and disrupting the permeability of the outer membrane.
Conclusion: When our results are evaluated, we show that NET1 and NET3 peptide has the potential to be a new generation broad-spectrum antibiotic candidate that can be used for the treatment of carbapenem-resistant K. pneumoniae infection.
Ethical Statement
This article does not contain any studies with human participants or animals performed by any of the authors.
Supporting Institution
Acibadem University
References
-
1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global
multifaceted phenomenon. Pathog Glob Health 2015;109:309–18.
https://doi.org/10.1179/2047773215Y.0000000030.
-
2. Sartorius B, Gray AP, Davis Weaver N, et al. The burden of bacterial
antimicrobial resistance in the WHO African region in 2019: a crosscountry
systematic analysis. Lancet Glob Health 2024;12:e201–16.
https://doi.org/10.1016/S2214-109X23.00539-9.
-
3. Ferdinand AS, McEwan C, Lin C, et al. Development of a crosssectoral
antimicrobial resistance capability assessment framework.
BMJ Glob Health 2024;9:e013280. https://doi.org/10.1136/
bmjgh-2023-013280.
-
4. El-Aziz NKA, El-Hamid MIA, Bendary MM, et al. Existence of
vancomycin resistance among methicillin resistant s. aureus
recovered from animal and human sources in Egypt. Slovenian
Veterinary Research 2018;55:221–30. https://doi.org/10.26873/
SVR-649-2018.
-
5. Ghaly MF, Shaheen AA, Bouhy AM, et al. Alternative therapy
to manage otitis media caused by multidrug-resistant fungi.
Arch Microbiol 2020;202:1231–40. https://doi.org/10.1007/
s00203-020-01832-z.
-
6. Lim J-S, Chai Y-Y, Ser W-X, et al. Novel drug candidates against
antibiotic-resistant microorganisms: A review. Iran J Basic Med Sci
2024;27:134–50. https://doi.org/10.22038/ijbms.2023.71672.15593.
-
7. Ruckert A, Lake S, Van Katwyk SR. Developing a protocol on
antimicrobial resistance through WHO’s pandemic treaty will
protect lives in future pandemics. Global Health 2024;20:10. https://
doi.org/10.1186/s12992-024-01015-1.
-
8. Ahmed SK, Hussein S, Qurbani K, et al. Antimicrobial resistance:
Impacts, challenges, and future prospects. Journal of Medicine,
Surgery, and Public Health 2024;2:100081. https://doi.org/10.1016/j.
glmedi.2024.100081.
-
9. Asghar A, Khalid A, Baqar Z, et al. An insights into emerging trends
to control the threats of antimicrobial resistance AMR.: an address
to public health risks. Arch Microbiol 2024;206:72. https://doi.
org/10.1007/s00203-023-03800-9.
-
10. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection
biology: living to counteract host defences. FEMS Microbiol Rev
2019;43:123–44. https://doi.org/10.1093/femsre/fuy043.
-
11. Vincent J-L. International Study of the Prevalence and Outcomes of
Infection in Intensive Care Units. JAMA 2009;302:2323. https://doi.
org/10.1001/jama.2009.1754.
-
12. Abdulall AK, Tawfick MM, El Manakhly AR, et al. Carbapenemresistant
Gram-negative bacteria associated with catheter-related
bloodstream infections in three intensive care units in Egypt.
European Journal of Clinical Microbiology & Infectious Diseases
2018;37:1647–52. https://doi.org/10.1007/s10096-018-3294-7.
-
13. Zhang X, Shi S, Yao Z, et al. Antimicrobial peptide WAM-1: a promising
antibacterial and anti-inflammatory drug against carbapenemresistant
Klebsiella pneumoniae. Journal of Antimicrobial
Chemotherapy 2022;77:1903–11. https://doi.org/10.1093/jac/
dkac128.
-
14. Lee C-C, Lee C-H, Hong M-Y, et al. Propensity-matched analysis of
the impact of extended-spectrum β-lactamase production on
adults with community-onset Escherichia coli, Klebsiella species, and
Proteus mirabilis bacteremia. Journal of Microbiology, Immunology
and Infection 2018;51:519–26. https://doi.org/10.1016/j.
jmii.2017.05.006.
-
15. Shu L, Lu Q, Sun R, et al. Prevalence and phenotypic characterization
of carbapenem-resistant Klebsiella pneumoniae strains recovered
from sputum and fecal samples of ICU patients in Zhejiang Province,
China. Infect Drug Resist 2018;Volume 12:11–8. https://doi.
org/10.2147/IDR.S175823.
-
16. Qureshi ZA, Paterson DL, Potoski BA, et al. Treatment Outcome
of Bacteremia Due to KPC-Producing Klebsiella pneumoniae:
Superiority of Combination Antimicrobial Regimens. Antimicrob
Agents Chemother 2012;56:2108–13. https://doi.org/10.1128/
AAC.06268-11.
-
17. Zhang Y, Guo L-Y, Song W-Q, et al. Risk factors for carbapenemresistant
K. pneumoniae bloodstream infection and predictors of
mortality in Chinese paediatric patients. BMC Infect Dis 2018;18:248.
https://doi.org/10.1186/s12879-018-3160-3.
-
18. Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology
of the global expansion of Klebsiella pneumoniae carbapenemases.
Lancet Infect Dis 2013;13:785–96. https://doi.org/10.1016/
S1473-309913.70190-7.
-
19. Martin RM, Bachman MA. Colonization, Infection, and the Accessory
Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 2018;8.
https://doi.org/10.3389/fcimb.2018.00004.
-
20. de Souza CM, da Silva ÁP, Júnior NGO, et al. Peptides as a therapeutic
strategy against Klebsiella pneumoniae. Trends Pharmacol Sci
2022;43:335–48. https://doi.org/10.1016/j.tips.2021.12.006.
-
21. Unubol N, Selim Cinaroglu S, Elmas MA, et al. Peptide Antibiotics
Developed by Mimicking Natural Antimicrobial Peptides.
Clinical Microbiology: Open Access 2017;06. https://doi.
org/10.4172/2327-5073.1000291.
-
22. Polat T, Soyhan İ, Cebeci S, et al. New-generation biofilm effective
antimicrobial peptides and a real-time anti-biofilm activity assay:
CoMIC. Appl Microbiol Biotechnol 2024;108:316. https://doi.
org/10.1007/s00253-024-13134-1.
-
23. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella
pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis
2009;9:228–36. https://doi.org/10.1016/S1473-309909.70054-4.
-
24. Queenan AM, Bush K. Carbapenemases: the Versatile β-Lactamases.
Clin Microbiol Rev 2007;20:440–58. https://doi.org/10.1128/
CMR.00001-07.
-
25. Antibiotic resistance threats in the United States, 2019. Atlanta,
Georgia: 2019. https://doi.org/10.15620/cdc:82532.
-
26. Zhou H, Du X, Wang Y, et al. Antimicrobial peptide A20L: in vitro and
in vivo antibacterial and antibiofilm activity against carbapenemresistant
Klebsiella pneumoniae. Microbiol Spectr 2024;12. https://
doi.org/10.1128/spectrum.03979-23.
-
27. Zhao D, Tang M, Hu P, et al. Antimicrobial peptide Hs02 with
rapid bactericidal, anti-biofilm, and anti-inflammatory activity
against carbapenem-resistant Klebsiella pneumoniae and
Escherichia coli. Microbiol Spectr 2025;13. https://doi.org/10.1128/
spectrum.01050-24.
-
28. Hitt SJ, Bishop BM, van Hoek ML. Komodo-dragon cathelicidininspired
peptides are antibacterial against carbapenem-resistant
Klebsiella pneumoniae. J Med Microbiol 2020;69:1262–72. https://
doi.org/10.1099/jmm.0.001260.
-
29. Mohammadpour D, Memar MY, Leylabadlo HE, et al. Carbapenem-
Resistant Klebsiella pneumoniae: A comprehensive review of
phenotypic and genotypic methods for detection. The Microbe
2025;6:100246. https://doi.org/10.1016/j.microb.2025.100246.
-
30. Wang F, Zhou Q, Yang X, et al. Evaluation of ceftazidime/
avibactam alone and in combination with amikacin, colistin
and tigecycline against Klebsiella pneumoniae carbapenemaseproducing
K. pneumoniae by in vitro time-kill experiment. PLoS One
2021;16:e0258426. https://doi.org/10.1371/journal.pone.0258426.