BibTex RIS Kaynak Göster

Recent Developments In Above-Knee Prosthetics and The Importance of Energy Recovery In Transfemoral Amputee Gait

Yıl 2015, Sayı: 2, 61 - 68, 01.06.2015

Öz

Objectives: Use of a spring as an energy harvest/release mechanism for transfemoral prosthetics designs is gaining traction. While springs theoretically can minimize the energy flow deficiency during the stance phase knee flexion, there are problems associated with controlling the release of energy harvested by springs. The purpose of this review is to discuss the importance of controlled energy flow at the knee joint, recent attempts to harvest/return energy and the emphasis on the role of the ankle prosthesis in achieving assisted gait. Study Design: Literature Review Methods: Use of a spring in emerging prosthetic knee designs are presented in terms of their energy regeneration abilities along with their advantages and limitations. Results: Use of a spring in knee prosthetics can cut power demand significantly as they mimick the musculotendonous structures by harvesting and returning needed energy. Conclusions: Controlled energy flow at the knee joint could not only provide natural movement of the amputated limb but could also create positive power peaks at the knee joint. These features cannot be produced by any of the current generation of controlled damping prosthetic knees.

Kaynakça

  • Ziegler­Graham K, MacKenzie EJ, Ephraim PL, et al. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 2008;89:422­9.
  • U.S. Centers for Disease Control and Prevention. 2011 Diabetes National Fact Sheet. http://apps.nccd.cdc.gov/DDTSTRS/FactSheet. aspx (accessed 21 January 2014).
  • U.S. Centers for Disease Control and Prevention. Number of Americans with Diabetes Projected to Double or Triple by 2050. http://www.cdc. gov/media/pressrel/2010/r101022.html (accessed 15 June 2015).
  • Kaufman, K.R., Levine, J.A., Brey, R.H., et al. Arch Phys Med Rehabil 2008;89:1380­5.
  • Wentink, E.C., Rietman, J.S., Veltink, P.H., The feasibility of reflexive control in transfemoral prostheses. In: Annual Symposium of the IEEE­EMBS Benelux Chapter, 2009, Enschede, the Netherlands.
  • Burke MJ, Roman B, Weight V. Bone and joint changes in lower limb amputees. Annals of Rheumatic Diseases 1978;37:252­4.
  • Ehde DM, Czerniecki JM, Smith DG, et al. Chronic phantom sensations, phantom pain, residual limb pain, and other regional pain after lower limb amputation. Arch Phys Med Rehabil 2000;81:1039­44.
  • Farahmand F, Rezaeian T, Narimani R, Dinan PH, Kinematic and dynamic analysis of the gait cycle of above­knee amputees. Scientia Iranica 2006;13:261­71.
  • Bae T.S., Choi K., Hong D., Mun M., Dynamic analysis of above­knee amputee gait, Clin Biomech (Bristol, Avon) 2007;22:557­66.
  • Czerniecki JM, Gitter AJ; Gait analysis in the amputee: has it helped the amputee or contributed to the development of improved prosthetic components? Gait and Posture 1996;4:258­68.
  • Seroussi RE, Gitter AJ, Czerniecki JM; The mechanical work adaptations of above­knee amputee ambulation. Arch Phys Med Rehabil 1996;77:1209­14.
  • Johansson, J.L., Sherill, D.M., Riley, P.O., et al. A clinical comparison of variable damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil 2005 ;p45.
  • Kahle, J.T., Highsmith, M.J., Hubbard, S.L. Comparison of nonmicroprocessor knee mechanism versus C­Leg onProsthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev 2008;45:1­14.
  • Mauch, H.A., Hydraulic control unit for prosthetic leg, United States Patent 2,859,451,1956.
  • Chin, T., Machida, K., Sawamura, S., et al. Comparison of Different Microprocessor Controlled Knee Joints on the Energy Consumption during Walking in Trans­Femoral Amputees: Intelligent Knee Prosthesis (IP) versus C­leg. Prosthetics and Orthotics International. 2006;30:p73.
  • Marks L.J., Michael J.W. Science, medicine and the future. Artificial Limbs. British Medical Journal. m2001;323,732­5.
  • Kirker, S., Keymer, S., Talbot, J., Lachmann, S. An assessment of the intelligent knee prosthesis. Clini Rehabil 1996;10:267­73.
  • Buckley, J.G., Jones, S.F., Birch, K.M. Oxygen consumption during ambulation: comparison of using a prosthesis fitted with and without a tele­torsion device. Arch Phys Med Rehabil 2002;9:576­81.
  • Schmalz, T., Blumentritt, S., Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 2002;16:255­63.
  • Dunne, A. Ossur Power Knee. http://www.ele.uri.edu/courses/ ele282/F08/AndrewDunne_1.pdf (accessed 03 January 2012).
  • Stewart, C. P.U., Jain, A. S. 25 years of a total amputee service. Prosthet Orthot Int 1993;17:14­20.
  • Aeyels, B.L., Peeraer, J., Sloten, V. Development of an above­knee prosthesis equipped with a microcomputer­controlled knee joint: First test results. J Biomech Eng1992;14:199­202.
  • Sup, F, Varol, HA, Mitchell, J, et al. Design and Control of an Active ElectrIcal Knee and Ankle Prosthesis. Proceedings of the 2nd Biennial IEEE/RAS­EMBS International Conference on Biomedical Robotics and Biomechatronics 2008.
  • Sup, F, Varol, HA, Mitchell, J, et al. Self­Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee. IEEE Int Confon Rehabil Robotics 2009.
  • van den Bogert, T., Samorezov, S., Davis, B.L., Smith, W.A. Modeling and Optimal Control of an Energy­Storing Prosthetic Knee. J Biomech Eng 2012;134.
  • Varol, H.A., Sup, F., Goldfarb, M. Real­time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking. Proceedings of the 2nd Biennial IEEE/ RAS­EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008.
  • Martinez­Villalpando, E.C., Herr, H. Agonist­antagonist Active Knee Prosthesis: A preliminary Study in Level­ground Walking. J Rehabil Res Dev 2009; 46:361­74.
  • Argunsah, H., Davis, B.L. Application of Biomimetics in the Design of Medical Devices. In: Bar­Cohen, J. (eds.) Biomimetics Nature­Based Innovation. 1st ed. Florida, USA: CRC Press; 2012. p. 445­60.
  • Unal, R., Behrens, SM., Carloni, R., et al. Prototype Design and Realization of an Innovative Energy Efficient Transfemoral Prosthesis. IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. 2010.
  • Klute, G.K., Berge, J.S., Orendurff, M.S., et al. Prosthetic Intervention Effects on Activity of Lower­Extremity Amputees. Arch Phys Med Rehabil 2006;87:717­22.
  • Segal, A.D., Orendurff, M.S. Kinematic and kinetic comparisons of transfemoral amputee gait using C­Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 2006;43:857­70.
  • Argunsah Bayram, H. Chen, C­H., Davis, B.L., Active Functional Stiffness of the Knee Joint during Activities of Daily Living: A Parameter for Improved Design of Prosthetic Limbs. Clinical Biomechanics 2014;29:1193­9.
  • Hansen, A.H., Childress, D.S., Miff, S.C., et al. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech 2004;37:1467­74.
  • Alexander, R.M. Energy­saving mechanisms in walking and running. J Exp Biol1991;160:55­69.
  • Saunders J. B., Dec. M., Inman V. T., Eberhart H. D. The major determinants in normal and pathological gait. The journal of bone & joint surgery 1953;35:543­58.
  • Chen, I.H., Kuo, K.N., Andriacchi, T.P. The influence of walking speed on mechanical joint power during gait. Gait Posture 1997;6:171­6.
  • Olney, S.J., Griffin, M.P., McBride, I.D. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Physical therapy 1994;74:872­85.
  • Winter, D.A. Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clin Orthop Relat Res 1983;175:147­54.

DİzÜstÜ protez cİhazlardakİ son geliŞmeler ve dİzÜstÜ ampute hareketİnde enerjİ gerİ dÖnÜŞÜmÜnÜn Önemİ

Yıl 2015, Sayı: 2, 61 - 68, 01.06.2015

Öz

Amaç: Diz üstü protezlerde enerji depolama ve geri dönüşümünde yay kullanımı sıkça kullanılan bir metod haline gelmiştir. Teorik olarak yaylar hareketin ağırlığı kabul etme döneminde gerçekleşen dizdeki bükülme süresinde enerji akışındaki kaybı azaltırken, sıkıştırılan yayın salınmasının kontrolünde bazı problemler mevcuttur. Bu derlemenin amacı diz eklemindeki kontrollu enerji akışının önemini vurgulamak, son dönemde bu amaca ulaşmak için tasarlanan protezlerden bahsetmek ve bilek eklemi protezlerinin kontrollu ampute yürüyüşünü sağlamadaki önem ve katkılarından bahsetmektir. Çalışma Planı: Derleme Yöntemler: Hareket sırasında enerji geri dönüşümünü sağlamak amacıyla üretilen son teknoloji protez cihazlardan bahsedilmiş ve onların avantajları/ eksiklikleri belirtilmiştir. Bulgular: Yaylar kas ve tendon yapılarını taklit ederek hareket sırasında gerekli olan enerjiyi depolama ve geri gönderme sağlarlar, bu da güç gereksiniminin ciddi bir şekilde azalmasını sağlar. Sonuç: Diz ekleminde kontrollu enerji akışı, ampute edilmiş bacakla normal harekete ulaşılmasını sağlamakla kalmaz, aynı zamanda dizde pozitif güç periyotlarının oluşmasını da sağlar. Bu kazanımlar, günümüzde var olan ticari protez bacakların hiçbirinde bulunmamaktadır

Kaynakça

  • Ziegler­Graham K, MacKenzie EJ, Ephraim PL, et al. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 2008;89:422­9.
  • U.S. Centers for Disease Control and Prevention. 2011 Diabetes National Fact Sheet. http://apps.nccd.cdc.gov/DDTSTRS/FactSheet. aspx (accessed 21 January 2014).
  • U.S. Centers for Disease Control and Prevention. Number of Americans with Diabetes Projected to Double or Triple by 2050. http://www.cdc. gov/media/pressrel/2010/r101022.html (accessed 15 June 2015).
  • Kaufman, K.R., Levine, J.A., Brey, R.H., et al. Arch Phys Med Rehabil 2008;89:1380­5.
  • Wentink, E.C., Rietman, J.S., Veltink, P.H., The feasibility of reflexive control in transfemoral prostheses. In: Annual Symposium of the IEEE­EMBS Benelux Chapter, 2009, Enschede, the Netherlands.
  • Burke MJ, Roman B, Weight V. Bone and joint changes in lower limb amputees. Annals of Rheumatic Diseases 1978;37:252­4.
  • Ehde DM, Czerniecki JM, Smith DG, et al. Chronic phantom sensations, phantom pain, residual limb pain, and other regional pain after lower limb amputation. Arch Phys Med Rehabil 2000;81:1039­44.
  • Farahmand F, Rezaeian T, Narimani R, Dinan PH, Kinematic and dynamic analysis of the gait cycle of above­knee amputees. Scientia Iranica 2006;13:261­71.
  • Bae T.S., Choi K., Hong D., Mun M., Dynamic analysis of above­knee amputee gait, Clin Biomech (Bristol, Avon) 2007;22:557­66.
  • Czerniecki JM, Gitter AJ; Gait analysis in the amputee: has it helped the amputee or contributed to the development of improved prosthetic components? Gait and Posture 1996;4:258­68.
  • Seroussi RE, Gitter AJ, Czerniecki JM; The mechanical work adaptations of above­knee amputee ambulation. Arch Phys Med Rehabil 1996;77:1209­14.
  • Johansson, J.L., Sherill, D.M., Riley, P.O., et al. A clinical comparison of variable damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil 2005 ;p45.
  • Kahle, J.T., Highsmith, M.J., Hubbard, S.L. Comparison of nonmicroprocessor knee mechanism versus C­Leg onProsthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev 2008;45:1­14.
  • Mauch, H.A., Hydraulic control unit for prosthetic leg, United States Patent 2,859,451,1956.
  • Chin, T., Machida, K., Sawamura, S., et al. Comparison of Different Microprocessor Controlled Knee Joints on the Energy Consumption during Walking in Trans­Femoral Amputees: Intelligent Knee Prosthesis (IP) versus C­leg. Prosthetics and Orthotics International. 2006;30:p73.
  • Marks L.J., Michael J.W. Science, medicine and the future. Artificial Limbs. British Medical Journal. m2001;323,732­5.
  • Kirker, S., Keymer, S., Talbot, J., Lachmann, S. An assessment of the intelligent knee prosthesis. Clini Rehabil 1996;10:267­73.
  • Buckley, J.G., Jones, S.F., Birch, K.M. Oxygen consumption during ambulation: comparison of using a prosthesis fitted with and without a tele­torsion device. Arch Phys Med Rehabil 2002;9:576­81.
  • Schmalz, T., Blumentritt, S., Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 2002;16:255­63.
  • Dunne, A. Ossur Power Knee. http://www.ele.uri.edu/courses/ ele282/F08/AndrewDunne_1.pdf (accessed 03 January 2012).
  • Stewart, C. P.U., Jain, A. S. 25 years of a total amputee service. Prosthet Orthot Int 1993;17:14­20.
  • Aeyels, B.L., Peeraer, J., Sloten, V. Development of an above­knee prosthesis equipped with a microcomputer­controlled knee joint: First test results. J Biomech Eng1992;14:199­202.
  • Sup, F, Varol, HA, Mitchell, J, et al. Design and Control of an Active ElectrIcal Knee and Ankle Prosthesis. Proceedings of the 2nd Biennial IEEE/RAS­EMBS International Conference on Biomedical Robotics and Biomechatronics 2008.
  • Sup, F, Varol, HA, Mitchell, J, et al. Self­Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee. IEEE Int Confon Rehabil Robotics 2009.
  • van den Bogert, T., Samorezov, S., Davis, B.L., Smith, W.A. Modeling and Optimal Control of an Energy­Storing Prosthetic Knee. J Biomech Eng 2012;134.
  • Varol, H.A., Sup, F., Goldfarb, M. Real­time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking. Proceedings of the 2nd Biennial IEEE/ RAS­EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008.
  • Martinez­Villalpando, E.C., Herr, H. Agonist­antagonist Active Knee Prosthesis: A preliminary Study in Level­ground Walking. J Rehabil Res Dev 2009; 46:361­74.
  • Argunsah, H., Davis, B.L. Application of Biomimetics in the Design of Medical Devices. In: Bar­Cohen, J. (eds.) Biomimetics Nature­Based Innovation. 1st ed. Florida, USA: CRC Press; 2012. p. 445­60.
  • Unal, R., Behrens, SM., Carloni, R., et al. Prototype Design and Realization of an Innovative Energy Efficient Transfemoral Prosthesis. IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. 2010.
  • Klute, G.K., Berge, J.S., Orendurff, M.S., et al. Prosthetic Intervention Effects on Activity of Lower­Extremity Amputees. Arch Phys Med Rehabil 2006;87:717­22.
  • Segal, A.D., Orendurff, M.S. Kinematic and kinetic comparisons of transfemoral amputee gait using C­Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 2006;43:857­70.
  • Argunsah Bayram, H. Chen, C­H., Davis, B.L., Active Functional Stiffness of the Knee Joint during Activities of Daily Living: A Parameter for Improved Design of Prosthetic Limbs. Clinical Biomechanics 2014;29:1193­9.
  • Hansen, A.H., Childress, D.S., Miff, S.C., et al. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech 2004;37:1467­74.
  • Alexander, R.M. Energy­saving mechanisms in walking and running. J Exp Biol1991;160:55­69.
  • Saunders J. B., Dec. M., Inman V. T., Eberhart H. D. The major determinants in normal and pathological gait. The journal of bone & joint surgery 1953;35:543­58.
  • Chen, I.H., Kuo, K.N., Andriacchi, T.P. The influence of walking speed on mechanical joint power during gait. Gait Posture 1997;6:171­6.
  • Olney, S.J., Griffin, M.P., McBride, I.D. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Physical therapy 1994;74:872­85.
  • Winter, D.A. Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clin Orthop Relat Res 1983;175:147­54.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Collection
Yazarlar

Hande Argunsah Bayram

Yayımlanma Tarihi 1 Haziran 2015
Yayımlandığı Sayı Yıl 2015Sayı: 2

Kaynak Göster

EndNote Bayram HA (01 Haziran 2015) Recent Developments In Above-Knee Prosthetics and The Importance of Energy Recovery In Transfemoral Amputee Gait. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 2 61–68.