BibTex RIS Cite

Functional Effects of Plant Secondary Metabolites On Health

Year 2020, Issue: 3, 384 - 390, 01.09.2020

Abstract

Some types of secondary compounds, which are generally classified into 4 groups as phenolic compounds, terpenes-steroids, alkaloids and organosulfur compounds are critical for both medicine and pharmacy since they show anti-inflammatory, hypoglycemic, hypolipidemic and antioxidant effects, have protective effects against cardiovascular diseases and cancer and have a variety of positive effects on health. It has been revealed that some phenolic compounds have cardioprotective effects by inhibiting the oxidation of lipoproteins, exhibiting hypocholesterolemic effect, reducing atherosclerosis risk, inhibiting platelet aggregation, improving vascular function, protecting the metabolism against inflammation and oxidative stress. Besides, some secondary compounds such as sulfurous compounds and flavonoids have beneficial effects on diabetes-related hyperglycemia and abnormal lipid profile and consequently, may be protective against diabetic neuropathy, diabetic nephropathy, and diabetic retinopathy. Some phenolic compounds and alkaloids have also been shown to demonstrate the anticarcinogenic activity by inhibiting carcinogenesis to DNA, having a protective effect against oxidative DNA damage, normalizing altered cell signaling leading to inhibition of malignant transformation, and inhibiting the growth and metastatic potential of cancer cells. A greater number of secondary metabolites have been discovered thanks to the development of bioreactor technology and the use of plant secondary metabolites has begun to be used more in drug production. However, rather than extract and nutraceutical forms of secondary metabolites, which are effective not only in the treatment of the diseases but also maintaining health and avoiding diseases, it may be more beneficial to consume natural forms of them with fruits and vegetables. The clinical course of a disease can be improved by recommending vegetables and fruits which are rich in secondary metabolites, whose functional activity is known in the medical nutritional recommendations for diseases. Studies evaluating the functional efficacy of different secondary metabolites against diseases may also be useful in terms of patient and disease-specific medical nutrition recommendations

References

  • 1. Babaoğlu M, Gürel E, Özcan S. Bitki Biyoteknolojisi I. Doku Kültürü ve Uygulamaları. Konya: Selçuk Üniversitesi Vakfı Yayınları; 2001. ss.211–61.
  • 2. Güven A, Gürsul I. Bitki doku kültürlerinde sekonder metabolit sentezi. Gıda / J Food 2014;39:299–306. [CrossRef]
  • 3. Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci 2001;161:839–51. [CrossRef]
  • 4. Ahmad E, Arshad M, Khan MZ, Amjad MS, Sadaf HM, Riaz I, et al. Secondary metabolites and their multidimensional prospective in plant life. Journal Of Pharmacognosy And Phytochemistry 2017;6:205–14. http://www.phytojournal.com/archives/2017/ vol6issue2/PartC/6-2-2-130.pdf
  • 5. Yan M, Zhu Y, Zhang HJ, Jiao WH, Han BN, Liu ZX, et al. Antiinflammatory secondary metabolites from the leaves of Rosa laevigata. Bioorg Med Chem 2013;21:3290–7. [CrossRef]
  • 6. García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009;58:537–52. [CrossRef]
  • 7. Yoon JH, Baek SJ. Molecular targets of dietary polyphenols with antiinflammatory properties. Yonsei Med J 2005;46:585–96. [CrossRef]
  • 8. Mohammed MS, Osman WJ, Garelnabi EA, Osman Z, Osman B, Khalid HS, Mohamed MA. Secondary metabolites as antiinflammatory agents. J Phytopharmacol 2014;3:275–85. http:// www.phytopharmajournal.com/Vol3_Issue4_09.pdf
  • 9. Souto AL, Tavares JF, Da Silva MS, Diniz MF, De Athayde-Filho PF, Barbosa FJM. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 2011;16:8515–34. [CrossRef]
  • 10. De las Heras B, Hortelano S. Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm Allergy Drug Targets 2009;8:28–39. [CrossRef]
  • 11. Mandegary A, Pournamdari M, Sharififar F, Pournourmohammadi S, Fardiar R, Shooli S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem Toxicol 2012;50:2503–7. [CrossRef]
  • 12. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Antiinflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007;2007:45673. [CrossRef]
  • 13. Rotelli AE, Guardia T, Juárez AO, de la Rocha NE, Pelzer LE. Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res 2003;48:601–6. [CrossRef]
  • 14. Paradkar PN, Blum PS, Berhow MA, Baumann H, Kuo SM. Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Lett 2004;215:21–8. [CrossRef]
  • 15. Fang SC, Hsu CL, Yen GC. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J Agric Food Chem 2008;56:4463–8. [CrossRef]
  • 16. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014;37:S81–90. [CrossRef]
  • 17. Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010;67:113–8. https://www.ptfarm.pl/pub/ File/Acta_Poloniae/2010/2/113.pdf
  • 18. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 2015;12:60. [CrossRef]
  • 19. Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med 2014;12:35–41. [CrossRef]
  • 20. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci 2014;109:8–14. [CrossRef]
  • 21. Akiyama S, Katsumata SI, Suzuki K, Nakaya Y, Ishimi Y, Uehara M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci Biotechnol Biochem 2009;73:2779–82. [CrossRef ]
  • 22. Kakadiya J, Mulani H, Shah N. Protective effect of hesperidin on cardiovascular complication in experimentally induced myocardial infarction in diabetes in rats. J Basic Clin Pharm 2010;1:85–91. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979178/
  • 23. Prasath GS, Subramanian SP. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur J Pharmacol 2011;668:492– 6. [CrossRef]
  • 24. Niture NT, Ansari AA, Naik SR. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 2014;52:720–7.
  • 25. Prasath GS, Subramanian SP. Antihyperlipidemic Effect of Fisetin, a Bioflavonoid of Strawberries, Studied in Streptozotocin‐Induced Diabetic Rats. J Biochem Mol Toxicol 2014;28:442–9. [CrossRef]
  • 26. Sendrayaperumal V, Iyyam Pillai S, Subramanian S. Design, synthesis and characterization of zinc-morin, a metal flavonol complex and evaluation of its antidiabetic potential in HFD-STZ induced type 2 diabetes in rats. Chem Biol Interact 2014;219:9–17. [CrossRef]
  • 27. Cho KW, Lee OH, Banz WJ, Moustaid-Moussa N, Shay NF, Kim YC. Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARγ transcriptional activity. J Nutr Biochem 2010;21:841–7. [CrossRef]
  • 28. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008;93:2559–65. [CrossRef]
  • 29. Shi Y, Liang XC, Zhang H, Wu QL, Qu L, Sun Q. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition. Acta Pharmacol Sin 2013;34:1140–8. [CrossRef]
  • 30. Hao LN, Wang M, Ma JL, Yang T. Puerarin decreases apoptosis of retinal pigment epithelial cells in diabetic rats by reducing peroxynitrite level and iNOS expression. Sheng Li Xue Bao 2012;64:199–206. http://www.actaps.com.cn/qikan/manage/wenzhang/2012-2-13. pdf
  • 31. Ayepola OR, Cerf ME, Brooks NL, Oguntibeju OO. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine 2014;21:1785–93. [CrossRef]
  • 32. Bao L, Zhang Z, Dai X, Ding Y, Jiang Y, Li Y, Li Y. Effects of grape seed proanthocyanidin extract on renal injury in type 2 diabetic rats. Mol Med Rep 2015;11:645–52. [CrossRef]
  • 33. Park CH, Noh JS, Fujii H, Roh SS, Song YO, Choi JS, et al. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates gluco-lipotoxicity-mediated renal disorder in type 2 diabetic db/db mice. Drug discoveries & therapeutics 2015;9, 13–22. [CrossRef]
  • 34. Türkiye İstatistik Kurumu. Ölüm Nedeni İstatistikleri. www.tuik.gov. tr/PdfGetir.do?id=24572
  • 35. World Health Organization. Cardiovascular Diseases Key Facts. http://www.who.int/news-room/fact-sheets/detail/ cardiovascular-diseases-(cvds)
  • 36. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response metaanalysis of prospective cohort studies. BMJ 2014;349:g4490. [CrossRef]
  • 37. Radhika G, Sudha V, Sathya RM, Ganesan A, Mohan V. Association of fruit and vegetable intake with cardiovascular risk factors in urban south Indians. Br J Nutr 2008;99:398–405. [CrossRef]
  • 38. Biagi M, Bertelli AA. Wine, alcohol and pills: What future for the French paradox? Life Sci 2015;131:19–22. [CrossRef]
  • 39. Wu JM, Wang ZR, Hsieh TC, Bruder JL, Zou JG, Huang YZ. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. Int J Mol Med 2001;8:3–17. [CrossRef]
  • 40. Pektaş A, Pektaş MB, Koca HB, Tosun M, Aslan E, Koca S, Sadi G. Effects of resveratrol on diabetes-induced vascular tissue damage and inflammation in male rats. Turkish Journal of Biochemistry 2017;42:451–8. [CrossRef]
  • 41. Singh B, Bhat TK, Singh B. Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem 2003;51:5579–97. [CrossRef]
  • 42. Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 2015;7:5177–216. [CrossRef]
  • 43. Yeh YY, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr 2001;131:989S–93S. [CrossRef]
  • 44. Chang HS, Yamato O, Yamasaki M, Maede Y. Modulatory influence of sodium 2-propenyl thiosulfate from garlic on cyclooxygenase activity in canine platelets: possible mechanism for the antiaggregatory effect. Prostaglandins Leukot Essent Fatty Acids 2005;72:351–5. [CrossRef]
  • 45. Moriguchi T, Takasugi N, Itakura Y. The effects of aged garlic extract on lipid peroxidation and the deformability of erythrocytes. J Nutr 2001;131:1016S–9S. [CrossRef]
  • 46. Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr 2013:67:64–70. [CrossRef]
  • 47. Azuma K, Minami Y, Ippoushi K, Terao J. Lowering effects of onion intake on oxidative stress biomarkers in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 2007;40:131–40. [CrossRef]
  • 48. Lee YM, Gweon OC, Seo YJ, Im J, Kang MJ, Kim MJ, Kim JI. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr Res Pract 2009;3:156–61. [CrossRef]
  • 49. World Health Organization. Cancer Key Facts. http://www.who.int/ en/news-room/fact-sheets/detail/cancer
  • 50. Carocho M, Ferreira, IC. The role of phenolic compounds in the fight against cancer-a review. Anticancer Agents Med Chem 2013;13:1236–58. [CrossRef]
  • 51. Sharangi AB. Secondary Metabolites in Spices and Medicinal Plants: An Overview. In: Siddiqui MW, Bansal V, Prasad K, editors. Plant Secondary Metabolites. Florida, US: Apple Academic Press; 2017. pp.163–88.
  • 52. Jafari S, Saeidnia S, Abdollahi M. Role of natural phenolic compounds in cancer chemoprevention via regulation of the cell cycle. Curr Pharm Biotechnol 2014;15:409–21. [CrossRef]
  • 53. Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 2010;649:84–91. [CrossRef]
  • 54. Shan BE, Wang MX, Li RQ. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer Invest 2009;27:604–12. [CrossRef]
  • 55. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: Cancer cell‐specific inhibition of cell cycle progression. J Cell Biochem 2009;106:73–82. [CrossRef]
  • 56. Parekh P, Motiwale L, Naik N, Rao KV. Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells. Exp Toxicol Pathol 2011;63:167–73. [CrossRef]
  • 57. Ong CS, Zhou J, Ong CN, Shen HM. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3β-Cyclin D1 pathway. Cancer Lett 2010;298:167–75. [CrossRef]
  • 58. Lim DY, Jeong Y, Tyner AL, Park JH. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol 2007;292:66–75. [CrossRef]
  • 59. Choi EJ, Kim GH. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 2008;15:683–90. [CrossRef]
  • 60. Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J. Metaanalyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 2010;92:141–53. [CrossRef]
  • 61. McCann SE, Thompson LU, Nie J, Dorn J, Trevisan M, Shields PG, et al. Dietary lignan intakes in relation to survival among women with breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat 2010;122:229–35. [CrossRef]
  • 62. Korkina L, Kostyuk V. Biotechnologically produced secondary plant metabolites for cancer treatment and prevention. Curr Pharm Biotechnol 2012;13:265–75. [CrossRef]

Bitki Sekonder Metabolitlerinin Sağlık Üzerine Fonksiyonel Etkileri

Year 2020, Issue: 3, 384 - 390, 01.09.2020

Abstract

Fenolik bileşikler, terpenler-steroidler, alkaloidler ve kükürtlü bileşikler olmak üzere genel olarak dört grupta sınıflandırılan sekonder bileşiklerin bazı türlerinin antiinflamatuar, hipoglisemik, hipolipidemik ve antioksidan etki göstermesi, kardiyovasküler hastalıklar ve kansere karşı koruyucu olması ve sağlık üzerine farklı birtakım olumlu etkileri bulunması dolayısıyla tıp ve eczacılık için büyük önem arz etmektedir. Bazı fenolik bileşiklerin lipoproteinlerin oksidasyonunu önleyerek, hipokolesterolemik etki göstererek, aterosklerozis riskini azaltarak, platelet agregasyonunu inhibe ederek, vasküler fonksiyonu iyileştirerek, inflamasyon ve oksidatif strese karşı koruyarak kardiyoprotektif etki gösterdiği, kükürtlü bileşikler ve flavonoidler gibi bazı sekonder bileşiklerin ise diyabete bağlı olarak görülen hiperglisemi ve bozulmuş lipid profiline karşı yararlı etkilerinin bulunduğu ve bu sayede diyabetik nöropati, diyabetik nefropati, diyabetik retinopatiye karşı koruyucu olabileceği belirtilmiştir. Bazı fenolik bileşikler ve alkaloidlerin de DNA’ya karsinojen bağlanmasını inhibe ederek, oksidatif DNA hasarına karşı koruyarak, malign dönüşümün inhibisyonuna yol açan değiştirilmiş hücre sinyallemesini normalize ederek, kanser hücresinin büyümesini ve metastatik potansiyelini inhibe ederek antikarsinojenik etki gösterdiği belirtilmiştir. Biyoreaktör teknolojisinin gelişimi ile daha fazla sayıda sekonder metabolit keşfedilmiş ve bu sayede ilaç yapımında bitki sekonder metabolitleri daha fazla kullanılmaya başlanmıştır. Fakat yalnızca hastalıkların tedavisinde değil, sağlığın sürdürülmesi ve hastalıklara karşı korunmada da etkili olan sekonder metabolitlerin ekstrakte ve nutrasötik formlarından ziyade meyve ve sebzelerle birlikte doğal formlarının alınması daha yararlı olabilmektedir. Hastalıklara ilişkin tıbbi beslenme önerilerinde de fonksiyonel etkinliği bilinen sekonder metabolitlerin yoğun bulunduğu sebze ve meyvelerin önerilmesiyle hastalığın klinik seyri iyileştirilebilir. Farklı sekonder metabolitlerin hastalıklara karşı fonksiyonel etkinliğinin değerlendirileceği çalışmalar hastaya ve hastalığa özgü tıbbi beslenme önerileri açısından da yararlı olabilir

References

  • 1. Babaoğlu M, Gürel E, Özcan S. Bitki Biyoteknolojisi I. Doku Kültürü ve Uygulamaları. Konya: Selçuk Üniversitesi Vakfı Yayınları; 2001. ss.211–61.
  • 2. Güven A, Gürsul I. Bitki doku kültürlerinde sekonder metabolit sentezi. Gıda / J Food 2014;39:299–306. [CrossRef]
  • 3. Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci 2001;161:839–51. [CrossRef]
  • 4. Ahmad E, Arshad M, Khan MZ, Amjad MS, Sadaf HM, Riaz I, et al. Secondary metabolites and their multidimensional prospective in plant life. Journal Of Pharmacognosy And Phytochemistry 2017;6:205–14. http://www.phytojournal.com/archives/2017/ vol6issue2/PartC/6-2-2-130.pdf
  • 5. Yan M, Zhu Y, Zhang HJ, Jiao WH, Han BN, Liu ZX, et al. Antiinflammatory secondary metabolites from the leaves of Rosa laevigata. Bioorg Med Chem 2013;21:3290–7. [CrossRef]
  • 6. García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009;58:537–52. [CrossRef]
  • 7. Yoon JH, Baek SJ. Molecular targets of dietary polyphenols with antiinflammatory properties. Yonsei Med J 2005;46:585–96. [CrossRef]
  • 8. Mohammed MS, Osman WJ, Garelnabi EA, Osman Z, Osman B, Khalid HS, Mohamed MA. Secondary metabolites as antiinflammatory agents. J Phytopharmacol 2014;3:275–85. http:// www.phytopharmajournal.com/Vol3_Issue4_09.pdf
  • 9. Souto AL, Tavares JF, Da Silva MS, Diniz MF, De Athayde-Filho PF, Barbosa FJM. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 2011;16:8515–34. [CrossRef]
  • 10. De las Heras B, Hortelano S. Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm Allergy Drug Targets 2009;8:28–39. [CrossRef]
  • 11. Mandegary A, Pournamdari M, Sharififar F, Pournourmohammadi S, Fardiar R, Shooli S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem Toxicol 2012;50:2503–7. [CrossRef]
  • 12. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Antiinflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007;2007:45673. [CrossRef]
  • 13. Rotelli AE, Guardia T, Juárez AO, de la Rocha NE, Pelzer LE. Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res 2003;48:601–6. [CrossRef]
  • 14. Paradkar PN, Blum PS, Berhow MA, Baumann H, Kuo SM. Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Lett 2004;215:21–8. [CrossRef]
  • 15. Fang SC, Hsu CL, Yen GC. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J Agric Food Chem 2008;56:4463–8. [CrossRef]
  • 16. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014;37:S81–90. [CrossRef]
  • 17. Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010;67:113–8. https://www.ptfarm.pl/pub/ File/Acta_Poloniae/2010/2/113.pdf
  • 18. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 2015;12:60. [CrossRef]
  • 19. Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med 2014;12:35–41. [CrossRef]
  • 20. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci 2014;109:8–14. [CrossRef]
  • 21. Akiyama S, Katsumata SI, Suzuki K, Nakaya Y, Ishimi Y, Uehara M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci Biotechnol Biochem 2009;73:2779–82. [CrossRef ]
  • 22. Kakadiya J, Mulani H, Shah N. Protective effect of hesperidin on cardiovascular complication in experimentally induced myocardial infarction in diabetes in rats. J Basic Clin Pharm 2010;1:85–91. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979178/
  • 23. Prasath GS, Subramanian SP. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur J Pharmacol 2011;668:492– 6. [CrossRef]
  • 24. Niture NT, Ansari AA, Naik SR. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 2014;52:720–7.
  • 25. Prasath GS, Subramanian SP. Antihyperlipidemic Effect of Fisetin, a Bioflavonoid of Strawberries, Studied in Streptozotocin‐Induced Diabetic Rats. J Biochem Mol Toxicol 2014;28:442–9. [CrossRef]
  • 26. Sendrayaperumal V, Iyyam Pillai S, Subramanian S. Design, synthesis and characterization of zinc-morin, a metal flavonol complex and evaluation of its antidiabetic potential in HFD-STZ induced type 2 diabetes in rats. Chem Biol Interact 2014;219:9–17. [CrossRef]
  • 27. Cho KW, Lee OH, Banz WJ, Moustaid-Moussa N, Shay NF, Kim YC. Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARγ transcriptional activity. J Nutr Biochem 2010;21:841–7. [CrossRef]
  • 28. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008;93:2559–65. [CrossRef]
  • 29. Shi Y, Liang XC, Zhang H, Wu QL, Qu L, Sun Q. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition. Acta Pharmacol Sin 2013;34:1140–8. [CrossRef]
  • 30. Hao LN, Wang M, Ma JL, Yang T. Puerarin decreases apoptosis of retinal pigment epithelial cells in diabetic rats by reducing peroxynitrite level and iNOS expression. Sheng Li Xue Bao 2012;64:199–206. http://www.actaps.com.cn/qikan/manage/wenzhang/2012-2-13. pdf
  • 31. Ayepola OR, Cerf ME, Brooks NL, Oguntibeju OO. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine 2014;21:1785–93. [CrossRef]
  • 32. Bao L, Zhang Z, Dai X, Ding Y, Jiang Y, Li Y, Li Y. Effects of grape seed proanthocyanidin extract on renal injury in type 2 diabetic rats. Mol Med Rep 2015;11:645–52. [CrossRef]
  • 33. Park CH, Noh JS, Fujii H, Roh SS, Song YO, Choi JS, et al. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates gluco-lipotoxicity-mediated renal disorder in type 2 diabetic db/db mice. Drug discoveries & therapeutics 2015;9, 13–22. [CrossRef]
  • 34. Türkiye İstatistik Kurumu. Ölüm Nedeni İstatistikleri. www.tuik.gov. tr/PdfGetir.do?id=24572
  • 35. World Health Organization. Cardiovascular Diseases Key Facts. http://www.who.int/news-room/fact-sheets/detail/ cardiovascular-diseases-(cvds)
  • 36. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response metaanalysis of prospective cohort studies. BMJ 2014;349:g4490. [CrossRef]
  • 37. Radhika G, Sudha V, Sathya RM, Ganesan A, Mohan V. Association of fruit and vegetable intake with cardiovascular risk factors in urban south Indians. Br J Nutr 2008;99:398–405. [CrossRef]
  • 38. Biagi M, Bertelli AA. Wine, alcohol and pills: What future for the French paradox? Life Sci 2015;131:19–22. [CrossRef]
  • 39. Wu JM, Wang ZR, Hsieh TC, Bruder JL, Zou JG, Huang YZ. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. Int J Mol Med 2001;8:3–17. [CrossRef]
  • 40. Pektaş A, Pektaş MB, Koca HB, Tosun M, Aslan E, Koca S, Sadi G. Effects of resveratrol on diabetes-induced vascular tissue damage and inflammation in male rats. Turkish Journal of Biochemistry 2017;42:451–8. [CrossRef]
  • 41. Singh B, Bhat TK, Singh B. Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem 2003;51:5579–97. [CrossRef]
  • 42. Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 2015;7:5177–216. [CrossRef]
  • 43. Yeh YY, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr 2001;131:989S–93S. [CrossRef]
  • 44. Chang HS, Yamato O, Yamasaki M, Maede Y. Modulatory influence of sodium 2-propenyl thiosulfate from garlic on cyclooxygenase activity in canine platelets: possible mechanism for the antiaggregatory effect. Prostaglandins Leukot Essent Fatty Acids 2005;72:351–5. [CrossRef]
  • 45. Moriguchi T, Takasugi N, Itakura Y. The effects of aged garlic extract on lipid peroxidation and the deformability of erythrocytes. J Nutr 2001;131:1016S–9S. [CrossRef]
  • 46. Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr 2013:67:64–70. [CrossRef]
  • 47. Azuma K, Minami Y, Ippoushi K, Terao J. Lowering effects of onion intake on oxidative stress biomarkers in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 2007;40:131–40. [CrossRef]
  • 48. Lee YM, Gweon OC, Seo YJ, Im J, Kang MJ, Kim MJ, Kim JI. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr Res Pract 2009;3:156–61. [CrossRef]
  • 49. World Health Organization. Cancer Key Facts. http://www.who.int/ en/news-room/fact-sheets/detail/cancer
  • 50. Carocho M, Ferreira, IC. The role of phenolic compounds in the fight against cancer-a review. Anticancer Agents Med Chem 2013;13:1236–58. [CrossRef]
  • 51. Sharangi AB. Secondary Metabolites in Spices and Medicinal Plants: An Overview. In: Siddiqui MW, Bansal V, Prasad K, editors. Plant Secondary Metabolites. Florida, US: Apple Academic Press; 2017. pp.163–88.
  • 52. Jafari S, Saeidnia S, Abdollahi M. Role of natural phenolic compounds in cancer chemoprevention via regulation of the cell cycle. Curr Pharm Biotechnol 2014;15:409–21. [CrossRef]
  • 53. Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 2010;649:84–91. [CrossRef]
  • 54. Shan BE, Wang MX, Li RQ. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer Invest 2009;27:604–12. [CrossRef]
  • 55. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: Cancer cell‐specific inhibition of cell cycle progression. J Cell Biochem 2009;106:73–82. [CrossRef]
  • 56. Parekh P, Motiwale L, Naik N, Rao KV. Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells. Exp Toxicol Pathol 2011;63:167–73. [CrossRef]
  • 57. Ong CS, Zhou J, Ong CN, Shen HM. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3β-Cyclin D1 pathway. Cancer Lett 2010;298:167–75. [CrossRef]
  • 58. Lim DY, Jeong Y, Tyner AL, Park JH. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol 2007;292:66–75. [CrossRef]
  • 59. Choi EJ, Kim GH. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 2008;15:683–90. [CrossRef]
  • 60. Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J. Metaanalyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 2010;92:141–53. [CrossRef]
  • 61. McCann SE, Thompson LU, Nie J, Dorn J, Trevisan M, Shields PG, et al. Dietary lignan intakes in relation to survival among women with breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat 2010;122:229–35. [CrossRef]
  • 62. Korkina L, Kostyuk V. Biotechnologically produced secondary plant metabolites for cancer treatment and prevention. Curr Pharm Biotechnol 2012;13:265–75. [CrossRef]
There are 62 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Taha Gökmen Ülger

Nurcan Yabancı Ayhan

Publication Date September 1, 2020
Published in Issue Year 2020Issue: 3

Cite

EndNote Ülger TG, Yabancı Ayhan N (September 1, 2020) Bitki Sekonder Metabolitlerinin Sağlık Üzerine Fonksiyonel Etkileri. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 3 384–390.